
College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 31P
Two spheres are both launched horizontally from a 1.0-m-high table. Sphere A is launched with an initial speed of 5.0 m/s. Sphere B is launched with an initial speed of 2.5 m/s.
a. What are the times for each sphere to hit the floor?
b. What are the distances that each travels from the edge of the table?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
a)
What is the minimum tension in N that the cable must be able to support without breaking? Assume the cable is massless.
T =
b)
If the cable can only support a tension of 10,000 N what is the highest mass the ball can have in kg?
mm =
Curve Fitter
CURVE FITTER
Open
Update Fit
Save
New
Exclusion Rules
Select Validation Data
Polynomial Exponential Logarithmic
Auto
Fourier
Fit
Fit
Duplicate Data
Manual
FILE
DATA
FIT TYPE
FIT
Harmonic Motion X
us
0.45
mi
ce
0.4
0.35
0.3
0.25
0.2
Residuals Plot
Contour Plot
Plot Prediction Bounds None
VISUALIZATION
Colormap Export
PREFERENCES EXPORT
Fit Options
COA Fourier
Equation
Fit Plot
x vs. t
-Harmonic Motion
a0+ a1*cos(x*w) +
b1*sin(x*w)
Number of terms
Center and scale
1
▸ Advanced Options
Read about fit options
Results
Value
Lower
Upper
0.15
a0
0.1586
0.1551
0.1620
a1
0.0163
0.0115
0.0211
0.1
b1
0.0011
-0.0093
0.0115
W
1.0473
0.9880
1.1066
2
8
10
t
12
14
16
18
20
Goodness of Fit
Value
Table of Fits
SSE
0.2671
Fit State Fit name
Data
Harmonic Motion x vs. t
Fit type
fourier1
R-square
0.13345
SSE
DFE
0.26712
296
Adj R-sq
0.12467
RMSE
0.030041
# Coeff
Valic
R-square
0.1335
4
DFE
296.0000
Adj R-sq
0.1247
RMSE
0.0300
What point on the spring or different masses should be the place to measure the displacement of the spring? For instance, should you measure to the bottom of the hanging masses?
Chapter 3 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 3 - a. Can a vector have nonzero magnitude if a...Ch. 3 - Is it possible to add a scalar to a vector? If so,...Ch. 3 - Suppose two vectors have unequal magnitudes. Can...Ch. 3 - Suppose C=A+B a. Under what circumstances does C =...Ch. 3 - For a projectile, which of the following...Ch. 3 - A baseball player throws a ball at a 40 angle to...Ch. 3 - An athlete performing the long jump tries to...Ch. 3 - A person trying to throw a ball as far as possible...Ch. 3 - If you kick a football, at what angle to the...Ch. 3 - A passenger on a jet airplane claims to be able to...
Ch. 3 - If you go to a ski area, youll likely find that...Ch. 3 - In an amusement-park ride, cars rolling along at...Ch. 3 - There are competitions in which pilots fly small...Ch. 3 - A cyclist goes around a level, circular track at...Ch. 3 - You are cycling around a circular track at a...Ch. 3 - An airplane has been directed to fly in a...Ch. 3 - When you go around a corner in your car, your car...Ch. 3 - Which combination of the vectors shown in Figure...Ch. 3 - Two vectors appear as in Figure Q3.19. Which...Ch. 3 - The gas pedal in a car is sometimes referred to as...Ch. 3 - A car travels at constant speed along the curved...Ch. 3 - A ball is fired from a cannon at point 1 and...Ch. 3 - A ball thrown at an initial angle of 37.0 and...Ch. 3 - A cannon elevated at 40 is fired at a wall 300 m...Ch. 3 - A car drives horizontally off a 73-m-high cliff at...Ch. 3 - A football is kicked at an angle of 30 with a...Ch. 3 - A football is kicked at an angle of 30 with a...Ch. 3 - Riders on a Ferris wheel move in a circle with a...Ch. 3 - Formula One race cars are capable of remarkable...Ch. 3 - A car goes around a corner in a circular arc at...Ch. 3 - A position vector with magnitude 10 m points to...Ch. 3 - A velocity vector 40 above the positive x-axis has...Ch. 3 - Jack and Jill ran up the hill at 3.0 m/s. The...Ch. 3 - Josh is climbing up a steep 34 slope, moving at a...Ch. 3 - A cannon tilted upward at 30 fires a cannonball...Ch. 3 - a. What are the x- and y-components of vector E of...Ch. 3 - Draw each of the following vectors, then find its...Ch. 3 - Draw each of the following vectors, then find its...Ch. 3 - Each of the following vectors is given in terms of...Ch. 3 - Each of the following vectors is given in terms of...Ch. 3 - A wildlife researcher is tracking a flock of...Ch. 3 - You begin sliding down a 15 ski slope. Ignoring...Ch. 3 - A car traveling at 30 m/s runs out of gas while...Ch. 3 - In the Soapbox Derby, young participants build...Ch. 3 - A piano has been pushed to the top of the ramp at...Ch. 3 - A car turns into a driveway that slopes upward at...Ch. 3 - Anita is running to the right at 5 m/s, as shown...Ch. 3 - An airplane cruises at 880 km/h relative to the...Ch. 3 - Anita is running to the right at 5 m/s, as shown...Ch. 3 - Raindrops are falling straight down at 12 m/s when...Ch. 3 - A boat takes 3.0 h to travel 30 km down a river,...Ch. 3 - Two children who are bored while waiting for their...Ch. 3 - A ball is thrown horizontally from a 20-m-high...Ch. 3 - A ball with a horizontal speed of 1.25 m/s rolls...Ch. 3 - A pipe discharges storm water into a creek. Water...Ch. 3 - A pipe discharges storm water into a creek. Water...Ch. 3 - Two spheres are both launched horizontally from a...Ch. 3 - A rifle is aimed horizontally at a target 50 m...Ch. 3 - A gray kangaroo can bound across a flat stretch of...Ch. 3 - On the Apollo 14 mission to the moon, astronaut...Ch. 3 - A sprinkler mounted on the ground sends out a jet...Ch. 3 - A good quarterback can throw a football at 27 m/s...Ch. 3 - Racing greyhounds are capable of rounding corners...Ch. 3 - To withstand g-forces of up to 10 gs, caused by...Ch. 3 - The Scion iQ is a compact car that is capable of...Ch. 3 - In a roundabout (or traffic circle), cars go...Ch. 3 - A particle rotates in a circle with centripetal...Ch. 3 - Entrance and exit ramps for freeways are often...Ch. 3 - A peregrine falcon in a tight, circular turn can...Ch. 3 - A particle rotates in a circle with centripetal...Ch. 3 - Suppose D=AB where vector A has components Ax = 5,...Ch. 3 - Suppose E = 2A+3B where vector A has components Ax...Ch. 3 - For the three vectors shown in Figure P3.47, the...Ch. 3 - Prob. 48GPCh. 3 - A typical set of stairs is angled at 38. You climb...Ch. 3 - A pilot in a small plane encounters shifting...Ch. 3 - A small plane, 100 km due south of the equator, is...Ch. 3 - A skier gliding across the snow at 3.0 m/s...Ch. 3 - A block slides along the frictionless track shown...Ch. 3 - When the moving sidewalk at the airport is broken,...Ch. 3 - Ships A and B leave port together. For the next...Ch. 3 - A flock of ducks is trying to migrate south for...Ch. 3 - A kayaker needs to paddle north across a...Ch. 3 - A plane has an airspeed of 200 mph. The pilot...Ch. 3 - The Gulf Stream off the east coast of the United...Ch. 3 - A physics student on Planet Exidor throws a ball,...Ch. 3 - A ball thrown horizontally at 25 m/s travels a...Ch. 3 - In 1780, in what is now referred to as Bradys...Ch. 3 - The longest recorded pass in an NFL game traveled...Ch. 3 - A spring-loaded gun, fired vertically, shoots a...Ch. 3 - Small-plane pilots regularly compete in message...Ch. 3 - In a shot-put event, an athlete throws the shot...Ch. 3 - Trained dolphins are capable of a vertical leap of...Ch. 3 - A tennis player hits a ball 2.0 m above the...Ch. 3 - The shot put is a track-and-field event in which...Ch. 3 - Water at the top of Horseshoe Falls (part of...Ch. 3 - A supply plane needs to drop a package of food to...Ch. 3 - A child slides down a frictionless 3.0-m-long...Ch. 3 - A sports car is advertised as capable of reaching...Ch. 3 - A Ford Mustang can accelerate from 0 to 60 mph in...Ch. 3 - The Screaming Swing is a carnival ride that isnot...Ch. 3 - On an otherwise straight stretch of road near...Ch. 3 - Riding the Water Slide A rider on a water slide...Ch. 3 - Riding the Water Slide A rider on a water slide...Ch. 3 - Riding the Water Slide A rider on a water slide...Ch. 3 - Riding the Water Slide A rider on a water slide...Ch. 3 - Riding the Water Slide A rider on a water slide...
Additional Science Textbook Solutions
Find more solutions based on key concepts
14. In a head-on collision, a car stops in 0.10 s from a speed of 14 m/s. The driver has a mass of 70 kg, and i...
College Physics: A Strategic Approach (3rd Edition)
WHAT IF? Rabies, a viral disease in mammals, is not currently found in the British Isles. If you were in charg...
Campbell Biology (11th Edition)
1. Which is a function of the skeletal system? (a) support, (b) hematopoietic site, (c) storage, (d) providing ...
Anatomy & Physiology (6th Edition)
Which of the following factors would tend to increase membrane fluidity? A. a greater proportion of unsaturated...
Campbell Biology in Focus (2nd Edition)
If someone at the other end of a room smokes a cigarette, you may breathe in some smoke. The movement of smoke ...
Campbell Essential Biology with Physiology (5th Edition)
a. How can aspirin be synthesized from benzene? b. Ibuprofen is the active ingredient in pain relievers such as...
Organic Chemistry (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Let's assume that the brightness of a field-emission electron gun is given by β = 4iB π² d²α² a) Assuming a gun brightness of 5x108 A/(cm²sr), if we want to have an electron beam with a semi-convergence angle of 5 milliradian and a probe current of 1 nA, What will be the effective source size? (5 points) b) For the same electron gun, plot the dependence of the probe current on the parameter (dpa) for α = 2, 5, and 10 milliradian, respectively. Hint: use nm as the unit for the electron probe size and display the three plots on the same graph. (10 points)arrow_forwardi need step by step clear answers with the free body diagram clearlyarrow_forwardNo chatgpt pls will upvotearrow_forward
- Review the data in Data Table 1 and examine the standard deviations and 95% Margin of Error calculations from Analysis Questions 3 and 4 for the Acceleration of the 1st Based on this information, explain whether Newton’s Second Law of Motion, Equation 1, was verified for your 1st Angle. Equation: SF=ma Please help with explaining the information I collected from a lab and how it relates to the equation and Newton's Second Law. This will help with additional tables in the lab. Thanks!arrow_forwardPlease solve and answer the problem step by step with explanations along side each step stating what's been done correctly please. Thank you!! ( preferably type out everything)arrow_forwardAnswer thisarrow_forward
- No chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvote instantarrow_forwardKirchoff's Laws. A circuit contains 3 known resistors, 2 known batteries, and 3 unknown currents as shown. Assume the current flows through the circuit as shown (this is our initial guess, the actual currents may be reverse). Use the sign convention that a potential drop is negative and a potential gain is positive. E₂ = 8V R₁₁ = 50 R₂ = 80 b с w 11 www 12 13 E₁ = 6V R3 = 20 a) Apply Kirchoff's Loop Rule around loop abefa in the clockwise direction starting at point a. (2 pt). b) Apply Kirchoff's Loop Rule around loop bcdeb in the clockwise direction starting at point b. (2 pt). c) Apply Kirchoff's Junction Rule at junction b (1 pt). d) Solve the above 3 equations for the unknown currents I1, 12, and 13 and specify the direction of the current around each loop. (5 pts) I1 = A 12 = A 13 = A Direction of current around loop abef Direction of current around loop bcde (CW or CCW) (CW or CCW)arrow_forward
- No chatgpt pls will upvotearrow_forward4.) The diagram shows the electric field lines of a positively charged conducting sphere of radius R and charge Q. A B Points A and B are located on the same field line. A proton is placed at A and released from rest. The magnitude of the work done by the electric field in moving the proton from A to B is 1.7×10-16 J. Point A is at a distance of 5.0×10-2m from the centre of the sphere. Point B is at a distance of 1.0×10-1 m from the centre of the sphere. (a) Explain why the electric potential decreases from A to B. [2] (b) Draw, on the axes, the variation of electric potential V with distance r from the centre of the sphere. R [2] (c(i)) Calculate the electric potential difference between points A and B. [1] (c(ii)) Determine the charge Q of the sphere. [2] (d) The concept of potential is also used in the context of gravitational fields. Suggest why scientists developed a common terminology to describe different types of fields. [1]arrow_forward3.) The graph shows how current I varies with potential difference V across a component X. 904 80- 70- 60- 50- I/MA 40- 30- 20- 10- 0+ 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 VIV Component X and a cell of negligible internal resistance are placed in a circuit. A variable resistor R is connected in series with component X. The ammeter reads 20mA. 4.0V 4.0V Component X and the cell are now placed in a potential divider circuit. (a) Outline why component X is considered non-ohmic. [1] (b(i)) Determine the resistance of the variable resistor. [3] (b(ii)) Calculate the power dissipated in the circuit. [1] (c(i)) State the range of current that the ammeter can measure as the slider S of the potential divider is moved from Q to P. [1] (c(ii)) Describe, by reference to your answer for (c)(i), the advantage of the potential divider arrangement over the arrangement in (b).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Relative Velocity - Basic Introduction; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=_39hCnqbNXM;License: Standard YouTube License, CC-BY