College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 39P
The Scion iQ is a compact car that is capable of very tight turns—it can spin around in a circle 8.0 m in diameter. If a driver goes around such a circle at 5 m/s (a bit faster than 10 mph), what is the magnitude of his acceleration?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An Aston Martin V8 Vantage sports car has a "lateral acceleration" of 8
m/s?. This is the maximum centripetal acceleration the car can sustain
without skidding out of a curved path. If the car is traveling at a
constant 43 m/s on level ground, what is the radius R of the tightest
unbanked curve it can negotiate?
An Aston Martin V8 Vantage sports car has a "lateral acceleration" of 7m/s2. This is the maximum centripetal acceleration the car can sustain without skidding out of a curve path. If the car is traveling at a constant 31m/s on level ground, what is the radius R of the tightest unbanked curved it can negotiate?
A sample of Uranium is rotating in a large centrifuge undergoing centripetal-acceleration. It “rides” in uniform circular motion. The radius is r = 4.0 m, and at some time t, the acceleration is a= 6i+4j
What is the speed of the rotating Uranium in meters/sec?
Chapter 3 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 3 - a. Can a vector have nonzero magnitude if a...Ch. 3 - Is it possible to add a scalar to a vector? If so,...Ch. 3 - Suppose two vectors have unequal magnitudes. Can...Ch. 3 - Suppose C=A+B a. Under what circumstances does C =...Ch. 3 - For a projectile, which of the following...Ch. 3 - A baseball player throws a ball at a 40 angle to...Ch. 3 - An athlete performing the long jump tries to...Ch. 3 - A person trying to throw a ball as far as possible...Ch. 3 - If you kick a football, at what angle to the...Ch. 3 - A passenger on a jet airplane claims to be able to...
Ch. 3 - If you go to a ski area, youll likely find that...Ch. 3 - In an amusement-park ride, cars rolling along at...Ch. 3 - There are competitions in which pilots fly small...Ch. 3 - A cyclist goes around a level, circular track at...Ch. 3 - You are cycling around a circular track at a...Ch. 3 - An airplane has been directed to fly in a...Ch. 3 - When you go around a corner in your car, your car...Ch. 3 - Which combination of the vectors shown in Figure...Ch. 3 - Two vectors appear as in Figure Q3.19. Which...Ch. 3 - The gas pedal in a car is sometimes referred to as...Ch. 3 - A car travels at constant speed along the curved...Ch. 3 - A ball is fired from a cannon at point 1 and...Ch. 3 - A ball thrown at an initial angle of 37.0 and...Ch. 3 - A cannon elevated at 40 is fired at a wall 300 m...Ch. 3 - A car drives horizontally off a 73-m-high cliff at...Ch. 3 - A football is kicked at an angle of 30 with a...Ch. 3 - A football is kicked at an angle of 30 with a...Ch. 3 - Riders on a Ferris wheel move in a circle with a...Ch. 3 - Formula One race cars are capable of remarkable...Ch. 3 - A car goes around a corner in a circular arc at...Ch. 3 - A position vector with magnitude 10 m points to...Ch. 3 - A velocity vector 40 above the positive x-axis has...Ch. 3 - Jack and Jill ran up the hill at 3.0 m/s. The...Ch. 3 - Josh is climbing up a steep 34 slope, moving at a...Ch. 3 - A cannon tilted upward at 30 fires a cannonball...Ch. 3 - a. What are the x- and y-components of vector E of...Ch. 3 - Draw each of the following vectors, then find its...Ch. 3 - Draw each of the following vectors, then find its...Ch. 3 - Each of the following vectors is given in terms of...Ch. 3 - Each of the following vectors is given in terms of...Ch. 3 - A wildlife researcher is tracking a flock of...Ch. 3 - You begin sliding down a 15 ski slope. Ignoring...Ch. 3 - A car traveling at 30 m/s runs out of gas while...Ch. 3 - In the Soapbox Derby, young participants build...Ch. 3 - A piano has been pushed to the top of the ramp at...Ch. 3 - A car turns into a driveway that slopes upward at...Ch. 3 - Anita is running to the right at 5 m/s, as shown...Ch. 3 - An airplane cruises at 880 km/h relative to the...Ch. 3 - Anita is running to the right at 5 m/s, as shown...Ch. 3 - Raindrops are falling straight down at 12 m/s when...Ch. 3 - A boat takes 3.0 h to travel 30 km down a river,...Ch. 3 - Two children who are bored while waiting for their...Ch. 3 - A ball is thrown horizontally from a 20-m-high...Ch. 3 - A ball with a horizontal speed of 1.25 m/s rolls...Ch. 3 - A pipe discharges storm water into a creek. Water...Ch. 3 - A pipe discharges storm water into a creek. Water...Ch. 3 - Two spheres are both launched horizontally from a...Ch. 3 - A rifle is aimed horizontally at a target 50 m...Ch. 3 - A gray kangaroo can bound across a flat stretch of...Ch. 3 - On the Apollo 14 mission to the moon, astronaut...Ch. 3 - A sprinkler mounted on the ground sends out a jet...Ch. 3 - A good quarterback can throw a football at 27 m/s...Ch. 3 - Racing greyhounds are capable of rounding corners...Ch. 3 - To withstand g-forces of up to 10 gs, caused by...Ch. 3 - The Scion iQ is a compact car that is capable of...Ch. 3 - In a roundabout (or traffic circle), cars go...Ch. 3 - A particle rotates in a circle with centripetal...Ch. 3 - Entrance and exit ramps for freeways are often...Ch. 3 - A peregrine falcon in a tight, circular turn can...Ch. 3 - A particle rotates in a circle with centripetal...Ch. 3 - Suppose D=AB where vector A has components Ax = 5,...Ch. 3 - Suppose E = 2A+3B where vector A has components Ax...Ch. 3 - For the three vectors shown in Figure P3.47, the...Ch. 3 - Prob. 48GPCh. 3 - A typical set of stairs is angled at 38. You climb...Ch. 3 - A pilot in a small plane encounters shifting...Ch. 3 - A small plane, 100 km due south of the equator, is...Ch. 3 - A skier gliding across the snow at 3.0 m/s...Ch. 3 - A block slides along the frictionless track shown...Ch. 3 - When the moving sidewalk at the airport is broken,...Ch. 3 - Ships A and B leave port together. For the next...Ch. 3 - A flock of ducks is trying to migrate south for...Ch. 3 - A kayaker needs to paddle north across a...Ch. 3 - A plane has an airspeed of 200 mph. The pilot...Ch. 3 - The Gulf Stream off the east coast of the United...Ch. 3 - A physics student on Planet Exidor throws a ball,...Ch. 3 - A ball thrown horizontally at 25 m/s travels a...Ch. 3 - In 1780, in what is now referred to as Bradys...Ch. 3 - The longest recorded pass in an NFL game traveled...Ch. 3 - A spring-loaded gun, fired vertically, shoots a...Ch. 3 - Small-plane pilots regularly compete in message...Ch. 3 - In a shot-put event, an athlete throws the shot...Ch. 3 - Trained dolphins are capable of a vertical leap of...Ch. 3 - A tennis player hits a ball 2.0 m above the...Ch. 3 - The shot put is a track-and-field event in which...Ch. 3 - Water at the top of Horseshoe Falls (part of...Ch. 3 - A supply plane needs to drop a package of food to...Ch. 3 - A child slides down a frictionless 3.0-m-long...Ch. 3 - A sports car is advertised as capable of reaching...Ch. 3 - A Ford Mustang can accelerate from 0 to 60 mph in...Ch. 3 - The Screaming Swing is a carnival ride that isnot...Ch. 3 - On an otherwise straight stretch of road near...Ch. 3 - Riding the Water Slide A rider on a water slide...Ch. 3 - Riding the Water Slide A rider on a water slide...Ch. 3 - Riding the Water Slide A rider on a water slide...Ch. 3 - Riding the Water Slide A rider on a water slide...Ch. 3 - Riding the Water Slide A rider on a water slide...
Additional Science Textbook Solutions
Find more solutions based on key concepts
4. Three groups of nonvascular plants are _______, ______, and _______. Three groups of seedless vascular plant...
Biology: Life on Earth (11th Edition)
Write a molecular equation for the precipitation reaction that occurs (if any) when each pair of solutions is m...
Introductory Chemistry (6th Edition)
Match each of the following items with all the terms it applies to:
Human Physiology: An Integrated Approach (8th Edition)
1.3 Obtain a bottle of multivitamins and read the list of ingredients. What are four chemicals from the list?
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Examine the graph in Figure 6.3. Note that the growth rate increases slowly until the optimum is reached and th...
Microbiology with Diseases by Body System (5th Edition)
Johnny was vigorously exercising the only joints in the skull that are freely movable. What would you guess he ...
Anatomy & Physiology (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Figure P3.31 represents the total acceleration of a particle moving clockwise in a circle of radius 2.50 m at a certain instant of time. For that instant, find (a) the radial acceleration of the particle, (b) the speed of the particle, and (c) its tangential acceleration.arrow_forwardA boll rounds a 2 m radius curve at 4 m/s. The magnitude of it's acceleration in m/s².arrow_forwardA bicycle, starting from rest, accelerates at 2.07m/s2 on a circular track with a 195 m in diameter. What is the elapsed time, in seconds, at which the centripetal acceleration of the bicycle has the same magnitude as its tangential acceleration?arrow_forward
- Formula One race cars are capable of remarkable accelerations when speeding up, slowing down, and turning corners. At one track, cars round a corner that is a segment of a circle of radius 95 m at a speed of 68 m/s. What is the approximate magnitude of the centripetal acceleration, in units of g?arrow_forwardA car rounds a 26 m radius curve at 4 m/s. The magnitude of it's acceleration in m/s².arrow_forwardYou're designing a highway so that the maximum centripetal acceleration on a curve is no more than 1.1 m/s2 . What is the minimum curvature radius to accommodate a 100 km/h maximum speed? Express your answer to two significant figures and include the appropriate units.arrow_forward
- A motorcycle, starting from rest, accelerates at 2.87 m/s2 on a circular track with a 205 m diameter. What is the elapsed time, in seconds, at which the centripetal acceleration of the motorcycle has the same magnitude as its tangential acceleration?arrow_forwardA car of mass 980 kg coasts at a constant speed of 18 m/s over a circular hill of radius 250 m. What is the magnitude of its acceleration, in m/s2?arrow_forwardA motorcycle, initially at rest, starts to move on a circular track with a 400-m radius. The component of the motorcycle’s acceleration tangent to the path is given as a function of time by at = 2 + 0.2t. What is the motorcycle’s acceleration in terms of normal and tangential components at t = 10s?arrow_forward
- An aston martin v8 vantage sports car has a "lateral acceleration" of 7 m/s^2. this is the maximum centripetal acceleration the car can sustain without skidding out of a curved path. If the car is travelling at a constant 26 m/s on level ground, what is the radius R of the tightest unbanked curve it can negotiate?arrow_forwardIn the movie Kill Bill the character Gogo Yubari fights with a meteor hammer, which is a bladed metal sphere on the end of a chain. Let’s assume Gogo is spinning the meteor hammer in a vertical spin, as shown below, with a radius of motion as 1 m. She spins the weapon at 18 m/s. Gogo then lets out more chain, increasing the radius to 1.62 m. What is the new velocity of her weapon?arrow_forwardA Ford Mustang can accelerate from 0 to 60 mph in a time of 5.6 s. A Mini Cooper isn’t capable of such a rapid start, but it can turn in a very small circle 34 ft in diameter. How fast would you need to drive the Mini Cooper in this tight circle to match the magnitude of the Mustang’s acceleration?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
What Is Circular Motion? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=1cL6pHmbQ2c;License: Standard YouTube License, CC-BY