MindTap Engineering for Askeland/Wright's The Science and Engineering of Materials, 7th Edition, [Instant Access], 2 terms (12 months)
7th Edition
ISBN: 9781305111219
Author: Donald R. Askeland; Wendelin J. Wright
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 3.17P
(a)
To determine
The lattice parameter.
(b)
To determine
The atomic radius of potassium.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Calculate the density in g / cm3 of a metal with a structure fcc molecular mass of 100g / mol and an atomic radius of 0.145nm
Iron exhibits an allotropic behavior change of solid state structure in such a way that when it is heated to 910 C it undergoes a structure change from body-centered cubic BCC to face-centered cubic FCC considering that the atomic radius of iron increases to 0.1241 nm or 0.126 nm more when said temperature is reached obtainThe volume change experienced by the structure when the temperature of 910 C is reached
Sodium chloride (NaCl) has the rock salt crystal structure and a density of 2.17 g/cm³. The atomic weights of sodium and chlorine are
22.99 g/mol and 35.45 g/mol, respectively.
(a) Determine the unit cell edge length.
nm
(b) Determine the unit cell edge length from the radii in the table below assuming that the Nat and Cl- ions just touch each other along
the edges.
nm
Cation
Mg2+
Fe2+
Na+
Ionic Radius (nm)
0.072
0.077
0.102
Anion Ionic Radius (nm)
CI-
0²-
0.181
0.140
Chapter 3 Solutions
MindTap Engineering for Askeland/Wright's The Science and Engineering of Materials, 7th Edition, [Instant Access], 2 terms (12 months)
Ch. 3 - Prob. 3.1PCh. 3 - Prob. 3.2PCh. 3 - Prob. 3.3PCh. 3 - What is a polycrystalline material?Ch. 3 - Prob. 3.5PCh. 3 - Prob. 3.6PCh. 3 - Prob. 3.7PCh. 3 - Prob. 3.8PCh. 3 - Prob. 3.9PCh. 3 - Prob. 3.10P
Ch. 3 - Prob. 3.11PCh. 3 - Prob. 3.12PCh. 3 - Prob. 3.13PCh. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Prob. 3.16PCh. 3 - Prob. 3.17PCh. 3 - Prob. 3.18PCh. 3 - Prob. 3.19PCh. 3 - Prob. 3.20PCh. 3 - Prob. 3.21PCh. 3 - Prob. 3.22PCh. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - Aluminum foil used to package food isapproximately...Ch. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Thoria or thonrium dioxide can be describedas an...Ch. 3 - Prob. 3.30PCh. 3 - Prob. 3.31PCh. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - Prob. 3.35PCh. 3 - Prob. 3.36PCh. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - Prob. 3.39PCh. 3 - Prob. 3.40PCh. 3 - Prob. 3.41PCh. 3 - Prob. 3.42PCh. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - Prob. 3.47PCh. 3 - Prob. 3.48PCh. 3 - Prob. 3.49PCh. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - Prob. 3.53PCh. 3 - Prob. 3.54PCh. 3 - Prob. 3.55PCh. 3 - Prob. 3.56PCh. 3 - Prob. 3.57PCh. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Prob. 3.63PCh. 3 - Prob. 3.64PCh. 3 - Prob. 3.65PCh. 3 - Prob. 3.66PCh. 3 - Prob. 3.67PCh. 3 - Prob. 3.68PCh. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - Prob. 3.72PCh. 3 - Prob. 3.73PCh. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Determine the planar density and packing fraction...Ch. 3 - Prob. 3.78PCh. 3 - Prob. 3.79PCh. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - Prob. 3.82PCh. 3 - Prob. 3.83PCh. 3 - Prob. 3.84PCh. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - MgO, which has the sodium chloride structure, has...Ch. 3 - Prob. 3.93PCh. 3 - Prob. 3.94PCh. 3 - Prob. 3.95PCh. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Prob. 3.99PCh. 3 - Prob. 3.100PCh. 3 - Prob. 3.101DPCh. 3 - You want to design a material for making kitchen...Ch. 3 - Prob. 3.103CPCh. 3 - Prob. 3.104CPCh. 3 - Prob. 3.1KP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Vanadium (V) has a BCC crystal structure. The atomic radius is R = 0.132 nm and the atomic mass is M = 50.94 g/mole. What is the density of Vanadium in g/mm ? Given: Avogadro's Number NA = 0.6023 x 1024 (atoms/mole) Select one: O a, 0.021 O b. 0.011 Oc.1.5 d. 0.0087 e. 0.00597 Potassium (K) has the Body-Centered Cubic (BC) crystal structune. The edge length is a = 0.533 nm. What is the linear density in atoms/nm along direction (01112 Select one: O ENG O O 0 00arrow_forwardVanadium (V) has a BCC crystal structure. The atomic radius is R = 0.132 nm and the atomic mass is M = 50.94 g/mole. What is the density of Vanadium in g/mm3? Given: Avogadro’s Number NA = 0.6023 × 1024 (atoms/mole) Select one: a. 1.5 b. 0.021 c. 0.011 d. 0.0087 e. 0.00597arrow_forwardNiobium has a BCC crystal structure, an atomic radius of 0.143 nm and an atomic weight of 92.91 g/mol. Calculate the theoretical density for Nb. i g/cm³arrow_forward
- 3. Molybdenum has a BCC crystal structure, an atomic radius of 0.1363 nm, and an atomic weight of 95.94 g/mol. Compute its theoretical density.arrow_forwardA Lanthanum (atomic mass 138.91 g/mol) sample has a lattice parameter 3.77Å. Assume it contains 514 vacancies per 200 unit cells. Calculate (a) the number of vacancies per cm³, (b) density of the sample and (c) compare the number of vacancies per unit cell between the sample given and a perfect Lanthanum sample. Assume T=400C.*arrow_forwardFe has a BCC structure and an atomic radius of 0.126 nm. The atomic mass of Fe is 55.85 g/mol & Avogadro's No. is 6.023 x 1023. Calculate the density of Fe.arrow_forward
- Silver Ag has the fcc crystal structure as shown in the figure below. Determine its atomic packing factor APF? Given: The radius of Germanium: r(Ag)= 0.144 nm.  Select one: a. 0.14 b. 0.34 c. 0.68 d. 0.12 e. 0.4 f. 0.51 g. 0.74 h. 0.21arrow_forwardSilver Ag has the fcc crystal structure as shown in the figure below. Determine its atomic packing factor APF? Given: The radius of Germanium: rAg= 0.144 nm. Select one: Oa. 0.68 Ob.0.34 Od.o.14 te.0.74 1012 g.0.21 h.0.51arrow_forwardA metal crystallizes in the face‑centered cubic (FCC) lattice. The density of the metal is 1202012020 kg/m3, and the length of a unit cell edge, ?a, is 389.08389.08 pm. Calculate the mass of one metal atom. mass: gg Identify the metal. platinum gold silver palladiumarrow_forward
- The spacing of adjacent atoms in a NaCl crystal is 0.282 nm, and the masses of the atoms are 3.82*10-26 kg (Na) and 5.89*10-26 kg (CI). Use this information to calculate the density of NaCl. p= kg/m³arrow_forwardThe density of a sample of HCP beryllium is 1.844 g/cm 3 , and the lattice parameters are a 0 = 0.22858 nm and c 0 = 0.35842 nm. Calculate (a) the fraction of the lattice points that contains vacancies: and (b) the total number of vacancies in a cubic centimetre of Bearrow_forwardShow that Ni and Cu are totally soluble in one another using Hume-Rothery rules. Atomic radii, electronegativities and crystal structures of Ni and Cu are given below. Ni Cu Crystal Structure FCC FCC Electronegativities 1.9 1.8 r (nm) 0.1246 0.1278arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Understanding Motor ControlsMechanical EngineeringISBN:9781337798686Author:Stephen L. HermanPublisher:Delmar Cengage Learning
Understanding Motor Controls
Mechanical Engineering
ISBN:9781337798686
Author:Stephen L. Herman
Publisher:Delmar Cengage Learning