(a)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Dicalcium phosphate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Phosphorous is given in the form of Dicalcium phosphate.
(b)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Magnesium sulfate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Magnesium is given in the form of Magnesium sulfate.
(c)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Potassium chloride.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Potassium is given in the form of Potassium chloride.
(d)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Ferrous sulfate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Iron is given in the form of Ferrous sulfate.
(e)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Calcium carbonate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Calcium is given in the form of Calcium carbonate.
(f)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Zinc aspartate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Zinc is given in the form of Zinc aspartate.
(g)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Manganese sulfate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Manganese is given in the form of Manganese sulfate.
(h)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Titanium dioxide.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Titanium is given in the form of Titanium dioxide.
(i)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Horsetail leaf extract for silicon.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Silicon is given in the form of Horsetail leaf extract for silicon.
(j)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Copper sulfate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Copper is given in the form of Copper sulfate.
(k)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Boron citrate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Boron is given in the form of Boron citrate.
(l)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Molybdenum Amino acid Chelate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Molybdenum is given in the form of Molybdenum Amino acid Chelate.
(m)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Chromium picolinate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Chromium is given in the form of Chromium picolinate.
(n)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Potassium iodide.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Iodine is given in the form of Potassium iodide.
(o)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Sodium selenate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Selenium is given in the form of Sodium selenate.
(p)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Vanadyl sulfate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Vanadium is given in the form of Vanadyl sulfate.
(q)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Nickel sulfate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Nickel is given in the form of Nickel sulfate.
(r)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Stannous chloride.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Tin is given in the form of stannous chloride.
Want to see more full solutions like this?
Chapter 3 Solutions
OWLv2 for Bettelheim/Brown/Campbell/Farrell/Torres' Introduction to General, Organic and Biochemistry, 11th Edition, [Instant Access], 1 term (6 months)
- a) Propose a method to synthesize the following product. More than one step reaction is required. (10 marks)arrow_forwardthe vibrational frequency of I2 is 214.5 cm-1. (i) Using the harmonic oscillator model, evaluate the vibrational partition function and the mean vibrational energy of I2 at 1000K. (ii) What is the characteristic vibrational temperature of I2? (iii) At 1000K, assuming high-temperature approximation, evaluate the vibrational partition function and the mean vibrational energy of I2. (iv) Comparing (i) and (iii), is the high-temperature approximation good for I2 at 1000K?arrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- consider a weak monoprotic acid that is 32 deprotonated at ph 4.00 what is the pka of the weak acidarrow_forwardHow much energy does it take to raise the temperature of 1.0 mol H2O(g) from 100 °C to 200 °C at constant volume? Consider only translational and rotational contributions to the heat capacity. Hint: Use high-temp limit for non-linear molecule when calculating rotational contribution.arrow_forwardwhat was the pH of gastric juice obtained 5.0ml sample of gastric juice taken from a patient several hours after a meal and titrated the juice with 0,2M NaOH t neutrality the neutralization of gastric HCL required 5.0ml NaOH what was the pH of gastric juice?arrow_forward
- Please correct answer and don't used hand raitingarrow_forward2. Freckles (F) are dominant to no freckles (f). A heterozygous mother ( father ( have a baby. F = freckles, f= no freckles Genotype Phenotype Possibility 1: Possibility 2: Possibility 3: Possibility 4: and heterozygousarrow_forwardDon't used hand raitingarrow_forward
- Please correct answer and don't used hand raitingarrow_forwardthe rotational constant of HI is 6.511 cm-1. (i)What is the characteristic rotational temperature of HI? (ii) Evaluate the rotational partition function and the mean rotational energy of HI at 298K. Note that T=298K is much larger than the characteristic rotational temperature of HI.arrow_forward3. The ability to roll your tongue (R) is a dominant trait. A woman who cannot roll her tongue ( ) has a baby with a man who is homozygous dominant for this trait ( R = can roll tongue, r = cannot roll tongue ). Possibility 1: Possibility 2: Possibility 3: Possibility 4: Genotype Phenotypearrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning