(a)
To determine: The key point in the given titration curve where glycine is present as +H3N-CH2-COOH.
Introduction:
Titration of amino acids can be done in two ways; one by the addition of alkali and another by the addition of acid because they contain one amino group and one
(a)
Explanation of Solution
Explanation:
The titration of amino acids with a base occurs in three stages. Firstly when the solution is acidic, that is, the
The amino acid exists in the protonated form in the starting of the titration where concentration of hydrogen ions is high and the concentration of hydroxyl ions is very low. The glycine ion in the form +H3N-CH2-COOH consists of protonated amino acid group and protonated carboxylic acid group is present at low
(b)
To determine: The key point in the given titration curve where average net charge of glycine is
Introduction:
Titration of amino acids can be done in two ways; one by the addition of alkali and another by the addition of acid because they contain one amino group and one carboxylic acid group. The titration curve of amino acids is a plot of
(b)
Explanation of Solution
Explanation:
The glycine molecule consist of
(c)
To determine: The key point in the titration curve when half of the amino groups are ionized.
Introduction:
Titration of amino acids can be done in two ways; one by the addition of alkali and another by the addition of acid because they contain one amino group and one carboxylic acid group. The titration curve of amino acids is a plot of pH versus the concentration of alkali or acid.
(c)
Explanation of Solution
Explanation:
The titration of glycine with sodium hydroxide starts with the ionization of hydrogen ions present on the carboxylic acid group. When all the hydrogen ions present on the carboxylic acid group get neutralised, then the ionization of amino group begins that occurs at point III in the given titration curve. After this stage, the ionization of amino group starts and it reaches at half ionization when 0.5 more equivalents of hydroxyl ions are added to the solution. This drives the neutralization of half of the amino groups of glycine which corresponds to the point IV in the titration curve.
(d)
To determine: The key point in the given titration curve where pH of solution is equal to the pKa of carboxyl group.
Introduction:
Titration of amino acids can be done in two ways; one by the addition of alkali and another by the addition of acid because they contain one amino group and one carboxylic acid group. The titration curve of amino acids is a plot of pH versus the concentration of alkali or acid.
(d)
Explanation of Solution
Explanation:
The stage in the titration curve when pH of the solution is equal to the pKa of carboxylic acid group is when half of the carboxylic acid groups present in the solution get neutralized. This leads to the equal concentration of carboxylic acid and its conjugate base. The neutralization of half of the carboxylic acid groups occurs at the key point II. Therefore, pH of the solution is equal to pKa of carboxylic acid group at key point II in the given titration curve.
(e)
To determine: The key point in the given titration curve where pH of solution is equal to the pKa of protonated amino group.
Introduction:
Titration of amino acids can be done in two ways; one by the addition of alkali and another by the addition of acid because they contain one amino group and one carboxylic acid group. The titration curve of amino acids is a plot of pH versus the concentration of alkali or acid.
(e)
Explanation of Solution
Explanation:
The stage in the titration curve when pH of the solution is equal to the pKa of protonated amino group is the stage when half of the amino groups get neutralized which leads to the equal concentration of amino groups and its conjugate base. The neutralization of half of the amino groups occurs at the key point IV. Therefore, pH of the solution is equal to pKa of carboxylic acid group at key point IV in the given titration curve.
(f)
To determine: The key point in the given titration curve where glycine has maximum buffering capacity.
Introduction:
Titration of amino acids can be done in two ways; one by the addition of alkali and another by the addition of acid because they contain one amino group and one carboxylic acid group. The titration curve of amino acids is a plot of pH versus the concentration of alkali or acid.
(f)
Explanation of Solution
Explanation:
Buffer is the solution which resists any change in pH on the addition of small amounts of alkali or acid. The range in the given titration curve where the change in
(g)
To determine: The key point in the given titration curve where average net charge on glycine is zero.
Introduction:
Titration of amino acids can be done in two ways; one by the addition of alkali and another by the addition of acid because they contain one amino group and one carboxylic acid group. The titration curve of amino acids is a plot of pH versus the concentration of alkali or acid.
(g)
Explanation of Solution
Explanation:
The charge on the amino acid is zero in the titration curve when the number of protonated amino groups present in the solution is equal to the ionized carboxylic acid groups that occur at the isoelectric point. The isoelectric point is the point in the titration when the amino acid exists in zwitterionic form in the solution having net charge zero. This is defined by key point III in the given titration curve.
(h)
To determine: The key point in the given titration curve where carboxylic acid group is completely titrated.
Introduction:
Titration of amino acids can be done in two ways; one by the addition of alkali and another by the addition of acid because they contain one amino group and one carboxylic acid group. The titration curve of amino acids is a plot of pH versus the concentration of alkali or acid.
(h)
Explanation of Solution
Explanation:
The charge on the amino acid is zero in the titration curve when the number of protonated amino groups present in the solution is equal to the ionized carboxylic acid group which occurs at the isoelectric point. The isoelectric point is the point when the amino acid exists as zwitter ion in the solution having net charge zero which is defined by the key point III in the given titration curve. At this point, all the carboxylic acid groups present in the solution get titrated and the titration is at its first equivalence point. Therefore, carboxylic acid group has been completely titrated at the key point III in the given titration curve.
(i)
To determine: The key point in the given titration curve where glycine is completely titrated.
Introduction:
Titration of amino acids can be done in two ways; one by the addition of alkali and another by the addition of acid because they contain one amino group and one carboxylic acid group. The titration curve of amino acids is a plot of pH versus the concentration of alkali or acid.
(i)
Explanation of Solution
Explanation:
The point in the titration curve where glycine is fully titrated is the end point of the titration where all the hydrogen ions present on the amino group and the carboxylic acid group is completely ionized by the hydroxyl ions of the base. Therefore, glycine is completely titrated at the key point V in the given titration curve.
(j)
To determine: The key point in the given titration curve where glycine is predominantly present as+H3N-CH2-COO-.
Introduction:
Titration of amino acids can be done in two ways; one by the addition of alkali and another by the addition of acid because they contain one amino group and one carboxylic acid group. The titration curve of amino acids is a plot of pH versus the concentration of alkali or acid.
(j)
Explanation of Solution
Explanation:
The charge on the amino acid is zero in the titration curve when the number of protonated amino groups present in the solution is equal to the ionized carboxylic acid group which occurs at the isoelectric point. The isoelectric point is the point when the amino acid exists as zwitter ion in the solution having net charge zero which is defined by the key point III in the given titration curve. The species which predominantly exists at the isoelectric point is +H3N-CH2-COO-. Therefore, glycine exists as +H3N-CH2-COO- in the key point III.
(k)
To determine: The key point in the given titration curve where the average charge on glycine is -1.
Introduction:
Titration of amino acids can be done in two ways; one by the addition of alkali and another by the addition of acid because they contain one amino group and one carboxylic acid group. The titration curve of amino acids is a plot of pH versus the concentration of alkali or acid.
(k)
Explanation of Solution
Explanation:
The point in the titration curve where glycine is fully titrated is the end point of the titration where all the hydrogen ions present on the amino group and the carboxylic acid group are completely ionized by the hydroxyl ions of the base. At this point amino group is present as NH2 and carboxylic acid group is present as COO- having -1 net charge on the molecule. Therefore, glycine has net charge equal to -1 at the key point V in the given titration curve.
(l)
To determine: The key point in the given titration curve where glycine is present as 50:50 mixture of +H3N-CH2-COOH and+H3N-CH2-COO-.
Introduction:
Titration of amino acids can be done in two ways; one by the addition of alkali and another by the addition of acid because they contain one amino group and one carboxylic acid group. The titration curve of amino acids is a plot of pH versus the concentration of alkali or acid.
(l)
Explanation of Solution
Explanation:
The stage in the titration curve when half of the carboxylic acid groups get ionized leads to the equal concentration of carboxylic acid and its conjugate base in the solution. The ionization of half of the carboxylic acid groups leads to the formation of equal concentration of the species +H3N-CH2-COOH and +H3N-CH2-COO- which occurs at the key point II. Therefore, the given species predominantly exists as 50:50 mixture of +H3N-CH2-COOH and +H3N-CH2-COO- at key point II in the given titration curve.
(m)
To determine: The end point in the given titration curve which is known as isoelectric point.
Introduction:
Titration of amino acids can be done in two ways; one by the addition of alkali and another by the addition of acid because they contain one amino group and one carboxylic acid group. The titration curve of amino acids is a plot of pH versus the concentration of alkali or acid.
(m)
Explanation of Solution
Explanation:
The stage in the titration where the number of protonated amino groups present in the solution is equal to the ionized carboxylic acid group is known as the isoelectric point. The isoelectric point is the point when the amino acid exists as zwitter ion in the solution having net charge zero which is defined by the key point III in the given titration curve.
(n)
To determine: The key point in the given titration curve which is end of the titration.
Introduction:
Titration of amino acids can be done in two ways; one by the addition of alkali and another by the addition of acid because they contain one amino group and one carboxylic acid group. The titration curve of amino acids is a plot of pH versus the concentration of alkali or acid.
(n)
Explanation of Solution
Explanation:
The point in the titration curve where glycine is fully titrated is the end point of the titration where all the hydrogen ions present on the amino group and the carboxylic acid group are completely ionized by the hydroxyl ions of the base. The amino group exist as NH2and carboxylic acid group as COO- and there are no more hydrogen ions present for ionization. This is the end of titration. Therefore, the glycine is completely titrated at the key point V in the given titration curve.
(o)
To determine: The region in the given titration curve which corresponds to the worst pH region for buffering power.
Introduction:
Titration of amino acids can be done in two ways; one by the addition of alkali and another by the addition of acid because they contain one amino group and one carboxylic acid group. The titration curve of amino acids is a plot of pH versus the concentration of alkali or acid.
(o)
Explanation of Solution
Explanation:
Buffer solution is the solution which resists any change in pH on the addition of small amounts of alkali or acid. The range in the given titration curve where the change in pH is minimum corresponds to the best range for the solution to acts as buffer solution. The region from key points I, III, and V involves the maximum change in the pH of the solution due to which this region is the worst range for buffering power.
Want to see more full solutions like this?
Chapter 3 Solutions
SAPLINGPLUS FOR PRINCIPLES OF BIOCHEMIS
- Biochemistry Please help. Thank you When carbamyl phosphate is joined to L-ornathine, where does the energy for the reaction come from?arrow_forwardBiochemistry Question Please help. Thank you What is the function of glutamate dehydrogenase?arrow_forwardBiochemistry Question Please help. Thank you How and why does a high protein diet affect the enzymes of the urea cycle?arrow_forward
- Biochemistry What is the importance of the glucose-alanine cycle?arrow_forwardBiochemistry Assuming 2.5 molecules of ATP per oxidation of NADH/(H+) and 1.5molecules of ATP per oxidation of FADH2, how many ATP are produced per molecule of pyruvate? Please help. Thank youarrow_forward1. How would you explain the term ‘good food’? 2. How would you define Nutrition? 3. Nutrients are generally categorised into two forms. Discuss.arrow_forward
- Biochemistry Question. Please help solve. Thank you! Based upon knowledge of oxidation of bioorganic compounds and howmuch energy is released during their oxidation, rank the following, from most to least, with respect to how much energy would be produced from each during their oxidation. Explain your placement for each one.arrow_forwardBiochemistry Question.For the metabolism of amino acids what is the first step for theirbreakdown? Why is it necessary for this breakdown product to be transported to the liver? For the catabolism of the carbon backbone of these amino acids, there are 7 entry points into the “standard” metabolic pathways. List these 7 entry points and which amino acids are metabolized to these entry points. Please help. Thank you!arrow_forwardBiochemistry Question. Please help. Thank you. You are studying pyruvate utilization in mammals for ATP production under aerobic conditions and have synthesized pyruvate with Carbon #1 labelled with radioactive C14. After only one complete cycle of the TCA cycle, which of the TCA cycle intermediates would be labeled with C14? Explain your answer. Interestingly, you find C14 being excreted in the urine. How does it get there?arrow_forward
- Biochemistry question. Please help with. Thanks in advance For each of the enzymes listed below, explain what the enzyme does including function, names (or structures) of the substrate and products and the pathway(s) (if applicable) it is/are found in. (a) ATP synthetase (b) succinate dehydrogenase (c) isocitrate lyase (d) acetyl CoA carboxylase (e) isocitrate dehydrogenase (f) malate dehydrogenasearrow_forwardDraw and name each alcohol and classify it as primary, secondary, or tertiary. Explain your answer thoroughly.arrow_forwardDraw the product of each reaction. If there are multiple products, draw only the major product. Explain your answer thoroughly.arrow_forward
- BiochemistryBiochemistryISBN:9781319114671Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.Publisher:W. H. FreemanLehninger Principles of BiochemistryBiochemistryISBN:9781464126116Author:David L. Nelson, Michael M. CoxPublisher:W. H. FreemanFundamentals of Biochemistry: Life at the Molecul...BiochemistryISBN:9781118918401Author:Donald Voet, Judith G. Voet, Charlotte W. PrattPublisher:WILEY
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningFundamentals of General, Organic, and Biological ...BiochemistryISBN:9780134015187Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. PetersonPublisher:PEARSON