EBK OPERATIONS MANAGEMENT
14th Edition
ISBN: 9781260718447
Author: Stevenson
Publisher: MCG COURSE
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
thumb_up100%
Chapter 3, Problem 27P
Lovely Lawns Inc., intends to use sales of lawn fertilizer to predict lawn mower sales. The store manager estimates a probable six-week lag between fertilizer sales and mower sales. The pertinent data are:
a. Determine the con elation between the two variables. Does it appear that a relationship between these variables will yield reasonable predictions? Explain?
b. Obtain a linear regression line for the data.
c. Predict expected lawn mower sales for the first week in August given fertilizer sales six weeks earlier of 2 tons.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A pharmacist has been monitoring sales of a certain over-the-counter pain reliever. Daily sales during the last 15 days were as follows:Day 1 2 3 4 5 6 7 8 9Number sold 36 38 42 44 48 49 50 49 52Day 10 11 12 13 14 15Number sold 48 52 55 54 56 57a. Which method would you suggest using to predict future sales—a linear trend equation or trend-adjusted exponential smoothing? Why?
b. If you learn that on some days the store ran out of the specific pain reliever, would that knowledge cause you any concern? Explain
c. Assume that the data refer to demand rather than sales. Using trend-adjusted smoothing with an initial forecast of 50 for day 8, an initial trend estimate of 2, and α = β = .3, develop forecasts for days 9 through 16. What is the MSE for the eight forecasts for which there are actual data?
The following data relate the sales figures of the barin Mark Kaltenbach’s small bed-and-breakfast inn in Portand, tothe number of guests registered that week:WEEK GUESTS BAR SALES1 16 $3302 12 2703 18 3804 14 300
a) Perform a linear regression that relates bar sales to guests (notto time).b) If the forecast is for 20 guests next week, what are the salesexpected to be? PX
Mark Gershon, owner of a musical instrument distributorship, thinks that demand for guitars may be related to the
number of television appearances by the popular group Maroon 5 during the previous month. Gershon has collected
the data shown in the following table
Maroon 5 TV Appearances
Demand for Guitars
3 3
3 6 6
6 7 8 6
5 9 7
-0.0
This exercise contains only parts b, c, and d.
b) Using the least-squares regression method, the equation for forecasting is (round your responses to four decimal
places):
Chapter 3 Solutions
EBK OPERATIONS MANAGEMENT
Ch. 3.15 - Prob. 1.1RQCh. 3.15 - Prob. 1.2RQCh. 3.15 - Prob. 1.3RQCh. 3 - What are the main advantage that quantitative...Ch. 3 - What are some of the consequences of poor...Ch. 3 - List the specific weaknesses of each of these...Ch. 3 - Forecasts are generally wrong a. Why are forecasts...Ch. 3 - What is the purpose of establishing control limits...Ch. 3 - What factors would you consider in deciding...Ch. 3 - Contrast the use of MAD and MSE in evaluating...
Ch. 3 - What advantages as a forecasting tool does...Ch. 3 - How does the number of periods in a moving average...Ch. 3 - What factors enter into the choice of a value for...Ch. 3 - Prob. 11DRQCh. 3 - Explain how using a centered moving average with a...Ch. 3 - Contrast the terms sales and demand.Ch. 3 - Contrast the reactive and proactive approaches to...Ch. 3 - Explain how flexibility in production systems...Ch. 3 - How is forecasting in the context of a supply...Ch. 3 - Which type of forecasting approach, qualitative or...Ch. 3 - Prob. 18DRQCh. 3 - Choose the type of forecasting technique (survey,...Ch. 3 - Explain the trade-off between responsiveness and...Ch. 3 - Who needs to be involved in preparing forecasts?Ch. 3 - How has technology had an impact on forecasting?Ch. 3 - It has been said that forecasting using...Ch. 3 - What capability would an organization have to have...Ch. 3 - When a new business is started, or a patent idea...Ch. 3 - Discuss how you would manage a poor forecast.Ch. 3 - Omar has beard from some of his customers that...Ch. 3 - Give three examples of unethical conduct involving...Ch. 3 - A commercial baker, has recorded sales (in dozens)...Ch. 3 - National Scan, Inc., sells radio frequency...Ch. 3 - A dry cleaner uses exponential smoothing to...Ch. 3 - An electrical contractors records during the last...Ch. 3 - A cosmetics manufacturers marketing department has...Ch. 3 - Prob. 6PCh. 3 - Freight car loadings ova a 12-year period at a...Ch. 3 - Air travel on Mountain Airline for the past 18...Ch. 3 - a. Obtain the linear trend equation for the...Ch. 3 - After plotting demand for four periods, an...Ch. 3 - A manager of a store that sells and installs spas...Ch. 3 - The following equation summarizes the trend...Ch. 3 - Compute seasonal relatives for this data the SA...Ch. 3 - A tourist center is open on weekends (Friday,...Ch. 3 - The manager of a fashionable restaurant open...Ch. 3 - Obtain estimates of daily relatives for the number...Ch. 3 - A pharmacist has been monitoring sales of 2...Ch. 3 - New car sales for a dealer in Cook County,...Ch. 3 - The following table shows a tool and die companys...Ch. 3 - An analyst must decide between two different...Ch. 3 - Two different forecasting techniques (F1 and F2)...Ch. 3 - Two independent methods of forecasting based on...Ch. 3 - Long-Life Insurance has developed a linear model...Ch. 3 - Timely Transport provides local delivery service...Ch. 3 - The manager of a seafood restaurant was asked to...Ch. 3 - The following data were collected during a study...Ch. 3 - Lovely Lawns Inc., intends to use sales of lawn...Ch. 3 - The manager of a travel agency has been using a...Ch. 3 - Refer to the data in problem 22 a. Compute a...Ch. 3 - The classified department of a monthly magazine...Ch. 3 - A textbook publishing company has compiled data on...Ch. 3 - A manager has just receded an valuation from an...Ch. 3 - A manager uses this equation to predict demand for...Ch. 3 - A manager uses a trend equation plus quarterly...Ch. 3 - ML MANUFACTURING ML Manufacturing makes various...Ch. 3 - ML MANUFACTURING ML Manufacturing makes various...Ch. 3 - HIGHLINE FINANCIAL SERVICES, LTD. Highline...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.Similar questions
- The Baker Company wants to develop a budget to predict how overhead costs vary with activity levels. Management is trying to decide whether direct labor hours (DLH) or units produced is the better measure of activity for the firm. Monthly data for the preceding 24 months appear in the file P13_40.xlsx. Use regression analysis to determine which measure, DLH or Units (or both), should be used for the budget. How would the regression equation be used to obtain the budget for the firms overhead costs?arrow_forwardThe file P13_42.xlsx contains monthly data on consumer revolving credit (in millions of dollars) through credit unions. a. Use these data to forecast consumer revolving credit through credit unions for the next 12 months. Do it in two ways. First, fit an exponential trend to the series. Second, use Holts method with optimized smoothing constants. b. Which of these two methods appears to provide the best forecasts? Answer by comparing their MAPE values.arrow_forwardA small computer chip manufacturer wants to forecast monthly ozperating costs as a function of the number of units produced during a month. The company has collected the 16 months of data in the file P13_34.xlsx. a. Determine an equation that can be used to predict monthly production costs from units produced. Are there any outliers? b. How could the regression line obtained in part a be used to determine whether the company was efficient or inefficient during any particular month?arrow_forward
- Do the sales prices of houses in a given community vary systematically with their sizes (as measured in square feet)? Answer this question by estimating a simple regression equation where the sales price of the house is the dependent variable, and the size of the house is the explanatory variable. Use the sample data given in P13_06.xlsx. Interpret your estimated equation, the associated R-square value, and the associated standard error of estimate.arrow_forwardSuppose that a regional express delivery service company wants to estimate the cost of shipping a package (Y) as a function of cargo type, where cargo type includes the following possibilities: fragile, semifragile, and durable. Costs for 15 randomly chosen packages of approximately the same weight and same distance shipped, but of different cargo types, are provided in the file P13_16.xlsx. a. Estimate a regression equation using the given sample data, and interpret the estimated regression coefficients. b. According to the estimated regression equation, which cargo type is the most costly to ship? Which cargo type is the least costly to ship? c. How well does the estimated equation fit the given sample data? How might the fit be improved? d. Given the estimated regression equation, predict the cost of shipping a package with semifragile cargo.arrow_forwardThe file P13_02.xlsx contains five years of monthly data on sales (number of units sold) for a particular company. The company suspects that except for random noise, its sales are growing by a constant percentage each month and will continue to do so for at least the near future. a. Explain briefly whether the plot of the series visually supports the companys suspicion. b. By what percentage are sales increasing each month? c. What is the MAPE for the forecast model in part b? In words, what does it measure? Considering its magnitude, does the model seem to be doing a good job? d. In words, how does the model make forecasts for future months? Specifically, given the forecast value for the last month in the data set, what simple arithmetic could you use to obtain forecasts for the next few months?arrow_forward
- The file P13_28.xlsx contains monthly retail sales of U.S. liquor stores. a. Is seasonality present in these data? If so, characterize the seasonality pattern. b. Use Winters method to forecast this series with smoothing constants = = 0.1 and = 0.3. Does the forecast series seem to track the seasonal pattern well? What are your forecasts for the next 12 months?arrow_forwardThe file P13_26.xlsx contains the monthly number of airline tickets sold by the CareFree Travel Agency. a. Create a time series chart of the data. Based on what you see, which of the exponential smoothing models do you think will provide the best forecasting model? Why? b. Use simple exponential smoothing to forecast these data, using a smoothing constant of 0.1. c. Repeat part b, but search for the smoothing constant that makes RMSE as small as possible. Does it make much of an improvement over the model in part b?arrow_forwardStock market analysts are continually looking for reliable predictors of stock prices. Consider the problem of modeling the price per share of electric utility stocks (Y). Two variables thought to influence this stock price are return on average equity (X1) and annual dividend rate (X2). The stock price, returns on equity, and dividend rates on a randomly selected day for 16 electric utility stocks are provided in the file P13_15.xlsx. Estimate a multiple regression equation using the given data. Interpret each of the estimated regression coefficients. Also, interpret the standard error of estimate and the R-square value for these data.arrow_forward
- The file P13_22.xlsx contains total monthly U.S. retail sales data. While holding out the final six months of observations for validation purposes, use the method of moving averages with a carefully chosen span to forecast U.S. retail sales in the next year. Comment on the performance of your model. What makes this time series more challenging to forecast?arrow_forwardThe management of a technology company is trying to determine the variable that best explains the variation of employee salaries using a sample of 52 full-time employees; see the file P13_08.xlsx. Estimate simple linear regression equations to identify which of the following has the strongest linear relationship with annual salary: the employees gender, age, number of years of relevant work experience prior to employment at the company, number of years of employment at the company, or number of years of post secondary education. Provide support for your conclusion.arrow_forwardManagement of a home appliance store would like to understand the growth pattern of the monthly sales of Blu-ray disc players over the past two years. Managers have recorded the relevant data in the file P13_33.xlsx. a. Create a scatterplot for these data. Comment on the observed behavior of monthly sales at this store over time. b. Estimate an appropriate regression equation to explain the variation of monthly sales over the given time period. Interpret the estimated regression coefficients. c. Analyze the estimated equations residuals. Do they suggest that the regression equation is adequate? If not, return to part b and revise your equation. Continue to revise the equation until the results are satisfactory.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,Contemporary MarketingMarketingISBN:9780357033777Author:Louis E. Boone, David L. KurtzPublisher:Cengage LearningMarketingMarketingISBN:9780357033791Author:Pride, William MPublisher:South Western Educational Publishing
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,
Contemporary Marketing
Marketing
ISBN:9780357033777
Author:Louis E. Boone, David L. Kurtz
Publisher:Cengage Learning
Marketing
Marketing
ISBN:9780357033791
Author:Pride, William M
Publisher:South Western Educational Publishing
Single Exponential Smoothing & Weighted Moving Average Time Series Forecasting; Author: Matt Macarty;https://www.youtube.com/watch?v=IjETktmL4Kg;License: Standard YouTube License, CC-BY
Introduction to Forecasting - with Examples; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=98K7AG32qv8;License: Standard Youtube License