
Concept explainers
Primary Key:
A Primary Key in a
Example:
Students in Universities are assigned a unique registration number.
Therefore, in a STUDENT database table, the attribute “reg_no” acts as primary key.
Foreign Key:
Foreign Key is a column in a relational database table which provides a relation between two tables. It provides a cross reference between tables by pointing to primary key of another table.
Example:
In STUDENT database table, the attribute “reg_no” acts as primary key and in COURSE database table in which the student selects his or her course, the same “reg_no” acts as foreign key for the STUDENT table.
Candidate Key:
A set of attributes (minimal) which can uniquely identify a record is known as candidate keys. A attribute which could’ve been a primary key but for was not chosen as primary key for some reason is a candidate key.
The value of candidate is not null for every record in database and in unique.
The candidate key can be of composite attributes and there can be more than one candidate key in a relation.
SUPER KEY:
A set of one or more columns or attributes to uniquely identify rows in a table is called super key.
A Super Key is a candidate key containing redundant attributes.
All candidate keys are super keys as candidate keys are derived from super keys.
Any primary key plus any attribute is a super key.
SECONDARY KEY:
Secondary keys are the set of attributes which are not selected as primary key but are considered to be candidate keys for the primary key of the table.
Numbers of attributes that constitute secondary key are arbitrary.
Secondary keys are also known as alternate keys.
After selecting the attributes from candidate key to form a primary key, the remaining attributes of candidate key are called secondary keys.

Explanation of Solution
Given database tables:
Table Name: CHARTER
CHAR_TRIP | CHAR_DATE | CHAR_PILOT | CHAR_COPILOT | AC_NUMBER | CHAR_DESTINATION | CHAR_DISTANCE | CHAR_HOURS_FLOWN | CHA_HOURS_WAIT | CHAR_FUEL_GALLONS | CHAR_OIL_QTS | CUS_CODE |
10001 | 05-Feb-18 | 104 | 2289L | ATL | 936.0 | 5.1 | 2.2 | 354.1 | 1 | 10011 | |
10002 | 05-Feb-18 | 101 | 2778V | BNA | 320.0 | 1.6 | 0.0 | 72.6 | 0 | 10016 | |
10003 | 05-Feb-18 | 105 | 109 | 4278Y | GNV | 1574.0 | 7.8 | 0.0 | 339.8 | 2 | 10014 |
10004 | 06-Feb-18 | 106 | 1484P | STL | 472.0 | 2.9 | 4.9 | 97.2 | 1 | 10019 | |
10005 | 06-Feb-18 | 101 | 2289L | ATL | 1023.0 | 5.7 | 3.5 | 397.7 | 2 | 10011 | |
10006 | 06-Feb-18 | 109 | 4278Y | STL | 472.0 | 2.6 | 5.2 | 117.1 | 0 | 10017 | |
10007 | 06-Feb-18 | 104 | 105 | 2778V | GNV | 1574.0 | 7.9 | 0.0 | 348.4 | 2 | 10012 |
10008 | 07-Feb-18 | 106 | 1484P | TYS | 644.0 | 4.1 | 0.0 | 140.6 | 1 | 10014 | |
10009 | 07-Feb-18 | 105 | 2289L | GNV | 1574.0 | 6.6 | 23.4 | 459.9 | 0 | 10017 | |
10010 | 07-Feb-18 | 109 | 4278Y | ATL | 998.0 | 6.2 | 3.2 | 279.7 | 0 | 10016 | |
10011 | 07-Feb-18 | 101 | 104 | 1484P | BNA | 352.0 | 1.9 | 5.3 | 66.4 | 1 | 10012 |
10012 | 08-Feb-18 | 101 | 2289L | MOB | 884.0 | 4.8 | 4.2 | 215.1 | 0 | 10010 | |
10013 | 08-Feb-18 | 105 | 4278Y | TYS | 644.0 | 3.9 | 4.5 | 174.3 | 1 | 10011 | |
10014 | 09-Feb-18 | 106 | 4278V | ATL | 936.0 | 6.1 | 2.1 | 302.6 | 0 | 10017 | |
10015 | 09-Feb-18 | 104 | 101 | 2289L | GNV | 1645.0 | 6.7 | 0.0 | 459.5 | 2 | 10016 |
10016 | 09-Feb-18 | 109 | 105 | 2778V | MQY | 312.0 | 1.5 | 0.0 | 67.2 | 0 | 10011 |
10017 | 10-Feb-18 | 101 | 1484P | STL | 508.0 | 3.1 | 0.0 | 105.5 | 0 | 10014 | |
10018 | 10-Feb-18 | 105 | 104 | 4278Y | TYS | 644.0 | 3.8 | 4.5 | 167.4 | 0 | 10017 |
Table Name: AIRCRAFT
AC_NUMBER | MODE-CODE | AC_TTAF | AC_TTEL | AC_TTER |
1484P | PA23-250 | 1833.1 | 1833.1 | 101.8 |
2289L | C-90A | 4243.8 | 768.9 | 1123.4 |
2778V | PA31-350 | 7992.9 | 1513.1 | 789.5 |
4278Y | PA31-350 | 2147.3 | 622.1 | 243.2 |
Table Name: MODEL
MOD_CODE | MOD_MANUFACTER | MOD_NAME | MOD_SEATS | MOD_CHG_MILE |
B200 | Beechcraft | Super KingAir | 10 | 1.93 |
C-90A | Beechcraft | KingAir | 8 | 2.67 |
PA23-250 | Piper | Aztec | 6 | 1.93 |
PA31-350 | Piper | Navajao Chiettan | 10 | 2.35 |
Table Name: PILOT
EMP_NUM | PIL_LICENSE | PIL_RATINGS | PIL_MED_TYPE | PIL_MED_DATE | PIL_PTI35_DATE |
101 | ATP | ATP/SEL/MEL/Instr/CFII | 1 | 20-Jan-18 | 11-Jan-18 |
104 | ATP | ATP/SEL/MEL/Instr | 1 | 18-Dec-17 | 17-Jan-18 |
105 | COM | COMM/SEL/MEL/Instr/CFI | 2 | 05-Jan-18 | 02-Jan-18 |
106 | COM | COMM/SEL/MEL/Instr | 2 | 10-Dec-17 | 02-Feb-18 |
109 | COM | ATP/SEL/MEL/SES/Instr/CFII | 1 | 22-Jan-18 | 15-Jan-18 |
Table Name: EMPLOYEE
EMP_NUM | EMP_TITLE | EMP-LNAME | EMP_FNAME | EMP_INITIAL | EMP_CODE | EMP_HIRE_DATE |
100 | Mr. | Kolrnycz | George | D | 15-Jun-62 | 15-Mar-08 |
101 | Ms. | Lewis | Rhonda | G | 19-Mar-85 | 25-Apr-06 |
102 | Mr. | Vandam | Rhett | 14-Nov-78 | 18-May-13 | |
103 | Ms. | Jones | Anne | M | 11-May-94 | 26-Jul-17 |
104 | Mr. | Lange | John | P | 12-Jul-91 | 20-Aug-10 |
105 | Mr. | Williams | Robert | D | 14-Mar-95 | 19-Jun-17 |
106 | Mrs. | Duzak | Jeanine | K | 12-Feb-88 | 13-Mar-18 |
107 | Mr. | Deante | George | D | 01-May-95 | 02-Jul-16 |
108 | Mr. | Wiesanbach | Paul | R | 14-Feb-86 | 03-Jun-13 |
109 | Ms. | Travis | Elizabeth | K | 18-Jun-81 | 14-Feb-16 |
110 | Mrs. | Genkazi | Lieghla | W | 19-May-90 | 29-Jun-10 |
Table Name: EMPLOYEE
CUS_CODE | CUS_LNAME | CUS_FNAME | CUS_INITIAL | CUS_AREACODE | CUS_PHONE | CUS_BALANCE |
10010 | Ramas | Alfred | A | 615 | 844-2573 | 0.00 |
10011 | Dunne | Leona | K | 713 | 894-1293 | 0.00 |
10012 | Smith | Kathy | W | 615 | 894-2285 | 896.54 |
10013 | Owolski | Paul | F | 615 | 894-2180 | 1285.19 |
10014 | Orlando | Myron | 615 | 222-1672 | 673.21 | |
10015 | OBrian | Amy | B | 713 | 442-3381 | 1014.86 |
10016 | Brown | James | G | 615 | 297-1228 | 0.00 |
10017 | Williams | George | 615 | 290-2556 | 0.00 | |
10018 | Fariss | Anne | G | 713 | 382-7185 | 0.00 |
10019 | Smith | Olette | K | 615 | 297-3809 | 453.98 |
PRIMARY KEY in the above tables:
For Table Name: CHARTER:
Primary Key: CHAR_TRIP
“CHAR_TRIP” acts as primary key of the table because the attribute “CHAR_TRIP” is a unique ID that is assigned to every individual trip by the charter plane. It also uniquely identifies every other row present in the database table.
For Table Name: AIRCRAFT:
Primary Key: AC_NUMBER
“AC_NUMBER” acts as primary key of the table because the attribute “AC_NUMBER” is a unique number that is assigned to every individual charter plane and is used to distinguish among them. It also uniquely identifies every other row present in the database table.
For Table Name: MODEL:
Primary Key: MOD_CODE
“MOD_CODE” acts as primary key of the table because the attribute “MOC_CODE” is a unique number that is assigned to every individual model of the charter plane and is used to distinguish models among them. It also uniquely identifies every other row present in the database table.
For Table Name: PILOT:
Primary Key: EMP_NUM
“EMP_NUM” acts as primary key of the table because the attribute “EMP_NUM” is a unique number that is assigned to every pilot that flies an aircraft. It also uniquely identifies every other row present in the database table.
For Table Name: EMPLOYEE:
Primary Key: EMP_NUM
“EMP_NUM” acts as primary key of the table because the attribute “EMP_NUM” is a unique number or ID that is assigned to every employee that works in the airline. It also uniquely identifies every other row present in the database table.
For Table Name: CUSTOMER:
Primary Key: CUS_CODE
“CUS_CODE” acts as primary key of the table because the attribute “CUS_CODE” is a unique code that is assigned to every customer that books a flight with the airline. It also uniquely identifies every other row present in the database table.
FOREIGN KEY in the above tables:
For Table Name: CHARTER:
Primary Key: CHAR_PILOT,CHAR_COPILOT,AC_NUMBER,CUS_CODE
“CHAR_PILOT” acts as foreign key of the table because the attribute “CHAR_PILOT” is also present in the table PILOT and it references PILOT and hence it forms a link between the two tables.
“CHAR_COPILOT” acts as foreign key of the table because the attribute “CHAR_COPILOT” is also present in the table PILOT and it references PILOT and hence it forms a link between the two tables.
“AC_NUMBER” acts as foreign key of the table because the attribute “AC_NUMBER” is also present in the table AIRCRAFT and it references AIRCRAFT and hence it forms a link between the two tables.
“CUS_CODE” acts as foreign key of the table because the attribute “CUS_CODE” is also present in the table CUSTOMER and it references CUSTOMER and hence it forms a link between the two tables.
For Table Name: AIRCRAFT:
Foreign Key: MOD_CODE
“MOD_CODE” acts as foreign key of the table because the attribute “MOD_CODE” is also present in the table MODEL and it references MODEL and hence it forms a link between the two tables.
“For Table Name: MODEL:
Foreign Key: None
There is no Foreign Key attribute present in the table because there is no attribute in the table except the primary key which is present in any other database table.
For Table Name: PILOT:
Primary Key: EMP_NUM
“EMP_NUM” acts as foreign key of the table because the attribute “EMP_NUM” is also present in the table EMPLOYEE and it references EMPLOYEE and hence it forms a link between the two tables.
For Table Name: EMPLOYEE:
Foreign Key: None
There is no Foreign Key attribute present in the table because there is no attribute in the table except the primary key which is present in any other database table.
For Table Name: CUSTOMER:
Foreign Key: None
There is no Foreign Key attribute present in the table because there is no attribute in the table except the primary key which is present in any other database table.
Super key and Secondary Key in the above tables:
For Table Name: CHARTER:
Super Key:
CHAR_TRIP+CHAR_DATE: This combination of attributes can uniquely identify every other record present in the table.
Secondary Key:
CHAR_DATE+AC_NUMBER+CHAR_DESTINATION: This combination is an alternate key which will identify every other record present in the table is unique and it is less likely that one aircraft on same date will travel to the same destination twice.
For Table Name: AIRCRAFT:
Super Key:
AC_NUM+MOD_CODE: This combination of attributes can uniquely identify every other record present in the table.
Secondary Key:
MOD_CODE: This is an alternate key which will identify every other record present in the table and is unique.
For Table Name-MODEL:
Super Key:
MOD_CODE+MOD_NAME: This combination of attributes can uniquely identify every other record present in the table.
Secondary Key:
MOD_MANUFACTURER+MOD_NAME: This combination is an alternate key which will identify every other record present in the table and it is less likely that two models with same name and same manufacturer exist.
For Table Name-PILOT:
Super Key:
EMP_NUM+PIL_LICENSE: This combination of attributes can uniquely identify every other record present in the table.
Secondary Key:
PIL_LICENSE+PIL_MED_DATE: This combination is an alternate key which will identify every other record present in the table and it is less likely that two pilots with same license and same medical certificate exist.
For Table Name-EMPLOYEE:
Super Key:
EMP_NUM+EMP_DOB: This combination of attributes can uniquely identify every other record present in the table.
Secondary Key:
EMP_LNAME+EMP_FNAME+EMP_DOB: This combination is an alternate key which will identify every other record present in the table and it is less likely that two employees with same first name, same last name and same date of birth exist.
For Table Name-CUSTOMER:
Super Key:
CUS_CODE+CUS_LNAME: This combination of attributes can uniquely identify every other record present in the table.
Secondary Key:
CUS_LNAME+CUS_FNAME+CUS_PHONE: This combination is an alternate key which will identify every other record present in the table and it is less likely that two customers with same first name, same last name and same phone number exist.
Candidate keys present in the above table:
For table CHARTER:
Candidate Key: None
No practical candidate keys are possible. For example:
CHAR_DATE + CHAR_DESTINATION + AC_NUMBER + CHAR_PILOT + CHAR_COPILOT will not necessarily yield unique matches, because it is possible to fly an aircraft to the same destination twice on one date with the same pilot and copilot.
For table AIRCRAFT:
Candidate Key: None
No practical candidate keys are possible as no combination of attributes will yield unique matches, because it is possible to fly a same aircraft to the same destination twice on one date with the same pilot and copilot.
For table MODEL:
Candidate Key: None
No practical candidate keys are possible as no combination of attributes will yield unique matches, because it is possible to fly a same model of aircraft to the same destination twice on one date with the same pilot and copilot.
For table PILOT:
Candidate Key: None
No practical candidate keys are possible as no combination of attributes will yield unique matches, because it is possible to fly a same model of aircraft to the same destination twice on one date with the same pilot and copilot.
For table EMPLOYEE:
Candidate Key: EMP_LNAME + EMP_FNAME + EMP_INITIAL + EMP_DOB
The combinations of the above attributes will yield a unique outcome and hence is acceptable as candidate key.
For table CUSTOMER:
Candidate Key: CUS_LNAME + CUS_FNAME + CUS_INITIAL + CUS_PHONE
The combinations of the above attributes will yield a unique outcome and hence is acceptable as candidate key.
Want to see more full solutions like this?
Chapter 3 Solutions
DATABASE SYSTEMS-MINDTAPV2.0
- According to best practices, you should always make a copy of a config file and add a date to filename before editing? Explain why this should be done and what could be the pitfalls of not doing it.arrow_forwardIn completing this report, you may be required to rely heavily on principles relevant, for example, the Work System, Managerial and Functional Levels, Information and International Systems, and Security. apply Problem Solving Techniques (Think Outside The Box) when completing. should reflect relevance, clarity, and organisation based on research. Your research must be demonstrated by Details from the scenario to support your analysis, Theories from your readings, Three or more scholarly references are required from books, UWIlinc, etc, in-text or narrated citations of at least four (4) references. “Implementation of an Integrated Inventory Management System at Green Fields Manufacturing” Green Fields Manufacturing is a mid-sized company specialising in eco-friendly home and garden products. In recent years, growing demand has exposed the limitations of their fragmented processes and outdated systems. Different departments manage production schedules, raw material requirements, and…arrow_forward1. Create a Book record that implements the Comparable interface, comparing the Book objects by year - title: String > - author: String - year: int Book + compareTo(other Book: Book): int + toString(): String Submit your source code on Canvas (Copy your code to text box or upload.java file) > Comparable 2. Create a main method in Book record. 1) In the main method, create an array of 2 objects of Book with your choice of title, author, and year. 2) Sort the array by year 3) Print the object. Override the toString in Book to match the example output: @Javadoc Declaration Console X Properties Book [Java Application] /Users/kuan/.p2/pool/plugins/org.eclipse.justj.openjdk.hotspo [Book: year=1901, Book: year=2010]arrow_forward
- Q5-The efficiency of a 200 KVA, single phase transformer is 98% when operating at full load 0.8 lagging p.f. the iron losses in the transformer is 2000 watt. Calculate the i) Full load copper losses ii) half load copper losses and efficiency at half load. Ans: 1265.306 watt, 97.186%arrow_forward2. Consider the following pseudocode for partition: function partition (A,L,R) pivotkey = A [R] t = L for i L to R-1 inclusive: if A[i] A[i] t = t + 1 end if end for A [t] A[R] return t end function Suppose we call partition (A,0,5) on A=[10,1,9,2,8,5]. Show the state of the list at the indicated instances. Initial A After i=0 ends After 1 ends After i 2 ends After i = 3 ends After i = 4 ends After final swap 10 19 285 [12 pts]arrow_forward.NET Interactive Solving Sudoku using Grover's Algorithm We will now solve a simple problem using Grover's algorithm, for which we do not necessarily know the solution beforehand. Our problem is a 2x2 binary sudoku, which in our case has two simple rules: •No column may contain the same value twice •No row may contain the same value twice If we assign each square in our sudoku to a variable like so: 1 V V₁ V3 V2 we want our circuit to output a solution to this sudoku. Note that, while this approach of using Grover's algorithm to solve this problem is not practical (you can probably find the solution in your head!), the purpose of this example is to demonstrate the conversion of classical decision problems into oracles for Grover's algorithm. Turning the Problem into a Circuit We want to create an oracle that will help us solve this problem, and we will start by creating a circuit that identifies a correct solution, we simply need to create a classical function on a quantum circuit that…arrow_forward
- using r languagearrow_forward8. Cash RegisterThis exercise assumes you have created the RetailItem class for Programming Exercise 5. Create a CashRegister class that can be used with the RetailItem class. The CashRegister class should be able to internally keep a list of RetailItem objects. The class should have the following methods: A method named purchase_item that accepts a RetailItem object as an argument. Each time the purchase_item method is called, the RetailItem object that is passed as an argument should be added to the list. A method named get_total that returns the total price of all the RetailItem objects stored in the CashRegister object’s internal list. A method named show_items that displays data about the RetailItem objects stored in the CashRegister object’s internal list. A method named clear that should clear the CashRegister object’s internal list. Demonstrate the CashRegister class in a program that allows the user to select several items for purchase. When the user is ready to check out, the…arrow_forward5. RetailItem ClassWrite a class named RetailItem that holds data about an item in a retail store. The class should store the following data in attributes: item description, units in inventory, and price. Once you have written the class, write a program that creates three RetailItem objects and stores the following data in them: Description Units in Inventory PriceItem #1 Jacket 12 59.95Item #2 Designer Jeans 40 34.95Item #3 Shirt 20 24.95arrow_forward
- Find the Error: class Information: def __init__(self, name, address, age, phone_number): self.__name = name self.__address = address self.__age = age self.__phone_number = phone_number def main(): my_info = Information('John Doe','111 My Street', \ '555-555-1281')arrow_forwardFind the Error: class Pet def __init__(self, name, animal_type, age) self.__name = name; self.__animal_type = animal_type self.__age = age def set_name(self, name) self.__name = name def set_animal_type(self, animal_type) self.__animal_type = animal_typearrow_forwardTask 2: Comparable Interface and Record (10 Points) 1. You are tasked with creating a Java record of Dog (UML is shown below). The dog record should include the dog's name, breed, age, and weight. You are required to implement the Comparable interface for the Dog record so that you can sort the records based on the dogs' ages. Create a Java record named Dog.java. name: String breed: String age: int weight: double + toString(): String > Dog + compareTo(otherDog: Dog): int > Comparable 2. In the Dog record, establish a main method and proceed to generate an array named dogList containing three Dog objects, each with the following attributes: Dog1: name: "Buddy", breed: "Labrador Retriever", age: 5, weight: 25.5 Dog2: name: "Max", breed: "Golden Retriever", age: 3, weight: 30 Dog3: name: "Charlie", breed: "German Shepherd", age: 2, weight: 22 3. Print the dogs in dogList before sorting the dogList by age. (Please check the example output for the format). • 4. Sort the dogList using…arrow_forward
- Programming with Microsoft Visual Basic 2017Computer ScienceISBN:9781337102124Author:Diane ZakPublisher:Cengage Learning
- Database Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781305627482Author:Carlos Coronel, Steven MorrisPublisher:Cengage LearningDatabase Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781285196145Author:Steven, Steven Morris, Carlos Coronel, Carlos, Coronel, Carlos; Morris, Carlos Coronel and Steven Morris, Carlos Coronel; Steven Morris, Steven Morris; Carlos CoronelPublisher:Cengage LearningNp Ms Office 365/Excel 2016 I NtermedComputer ScienceISBN:9781337508841Author:CareyPublisher:Cengage



