Computer Science: An Overview (13th Edition) (What's New in Computer Science)
13th Edition
ISBN: 9780134875460
Author: Glenn Brookshear, Dennis Brylow
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 17CRP
Program Plan Intro
Load balancing:
Load balancing is defined as the process that dynamically allocates tasks to various processors. In multiprocessor system, load balancing helps the task to perform efficiently and help to obtain minimum response time and to achieve optimization of resource allocation.
Scaling:
Scaling is defined as the process of splitting the tasks into number of small tasks according to the number of processors available in the system. In multiprocessor system, it helps to achieve minimum response time and effective utilization of the processor.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
How does a multithreaded multiprocessor architecture operate?
Describe the potential challenges in implementing dynamic multithreading in processor architecture and how these challenges are addressed.
Explain the concept of pipelining in computer architecture. How does it differ from a traditional single-cycle processor design?
Chapter 3 Solutions
Computer Science: An Overview (13th Edition) (What's New in Computer Science)
Ch. 3.1 - Identify examples of queues. In each case,...Ch. 3.1 - Which of the following activities require...Ch. 3.1 - Prob. 3QECh. 3.1 - Prob. 4QECh. 3.2 - Prob. 1QECh. 3.2 - What is the difference between application...Ch. 3.2 - Prob. 3QECh. 3.2 - Prob. 4QECh. 3.3 - Summarize the difference between a program and a...Ch. 3.3 - Summarize the steps performed by the CPU when an...
Ch. 3.3 - Prob. 3QECh. 3.3 - If each time slice in a multiprogramming system is...Ch. 3.3 - Prob. 5QECh. 3.4 - Prob. 1QECh. 3.4 - Suppose a two-lane road converges to one lane to...Ch. 3.4 - Prob. 3QECh. 3.4 - Prob. 4QECh. 3.5 - Prob. 1QECh. 3.5 - Prob. 2QECh. 3.5 - If a process in a multiprogramming system could...Ch. 3 - List four activities of a typical operating...Ch. 3 - Summarize the distinction between batch processing...Ch. 3 - Prob. 3CRPCh. 3 - Prob. 4CRPCh. 3 - What is a multitasking operating system?Ch. 3 - Prob. 6CRPCh. 3 - On the basis of a computer system with which you...Ch. 3 - a. What is the role of the user interface of an...Ch. 3 - What directory structure is described by the path...Ch. 3 - Define the term process as it is used in the...Ch. 3 - Prob. 11CRPCh. 3 - What is the difference between a process that is...Ch. 3 - What is the difference between virtual memory and...Ch. 3 - Suppose a computer contained 512MB (MiB) of main...Ch. 3 - What complications could arise in a...Ch. 3 - What is the distinction between application...Ch. 3 - Prob. 17CRPCh. 3 - Summarize the booting process.Ch. 3 - Why is the booting process necessary?Ch. 3 - If you have a PC, record the sequence activities...Ch. 3 - Suppose a multiprogramming operating system...Ch. 3 - Prob. 22CRPCh. 3 - Prob. 23CRPCh. 3 - Prob. 24CRPCh. 3 - Prob. 25CRPCh. 3 - Would greater throughput be achieved by a system...Ch. 3 - Prob. 27CRPCh. 3 - What information is contained in the state of a...Ch. 3 - Identify a situation in a multiprogramming system...Ch. 3 - List in chronological order the major events that...Ch. 3 - Prob. 31CRPCh. 3 - Prob. 32CRPCh. 3 - Explain an important use for the test-and-set...Ch. 3 - Prob. 34CRPCh. 3 - Prob. 35CRPCh. 3 - Prob. 36CRPCh. 3 - Prob. 37CRPCh. 3 - Each of two robot arms is programmed to lift...Ch. 3 - Prob. 39CRPCh. 3 - Prob. 40CRPCh. 3 - Prob. 41CRPCh. 3 - Prob. 42CRPCh. 3 - Prob. 43CRPCh. 3 - Prob. 44CRPCh. 3 - Prob. 45CRPCh. 3 - Prob. 46CRPCh. 3 - Prob. 47CRPCh. 3 - Prob. 48CRPCh. 3 - Prob. 49CRPCh. 3 - Prob. 50CRPCh. 3 - Prob. 51CRPCh. 3 - Prob. 52CRPCh. 3 - How is the window manager related to the operating...Ch. 3 - Prob. 54CRPCh. 3 - Prob. 55CRPCh. 3 - Suppose you are using a multiuser operating system...Ch. 3 - Prob. 2SICh. 3 - Prob. 3SICh. 3 - Prob. 4SICh. 3 - Prob. 5SI
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Similar questions
- Explain the concept of dynamic scheduling and speculative execution in pipelining and their advantages in processor design.arrow_forwardExplain the concept of dynamic multithreading in processor architecture. How does it differ from simultaneous multithreading (SMT), and what are the performance benefits?arrow_forwardExplain the concept of superscalar execution in modern CPUs and how it allows multiple ALU instructions to be executed simultaneously. What are the challenges associated with implementing superscalar architectures?arrow_forward
- Why coherence is an accepted requirement in small scale multiprocessors.arrow_forwardDescribe the basic concept of instruction pipelining in CPU architecture and its advantages.arrow_forwardExplain the concept of dynamic multithreading and its advantages in a multi-core processor environment.arrow_forward
- Describe the concept of superscalar and out-of-order execution in modern CPU design.arrow_forwardDiscuss the concept of pipelining in ALU operations and its advantages in modern microprocessor design.arrow_forwardAnalyze the impact of SIMD (Single Instruction, Multiple Data) and MIMD (Multiple Instruction, Multiple Data) architectures on ALU instructions in parallel processing.arrow_forward
- What are some common challenges when programming for multi-core architectures?arrow_forwardInvestigate the impact of superscalar and VLIW (Very Long Instruction Word) architectures on ALU instruction execution in modern processors.arrow_forwardExplain the concept of dynamic instruction scheduling in out-of-order execution pipelines and its impact on performance.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Systems ArchitectureComputer ScienceISBN:9781305080195Author:Stephen D. BurdPublisher:Cengage Learning
Systems Architecture
Computer Science
ISBN:9781305080195
Author:Stephen D. Burd
Publisher:Cengage Learning