Physics (5th Edition)
5th Edition
ISBN: 9780134051802
Author: Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 29, Problem 76GP
A clock at rest has a rectangular shape, with a width of 24 cm and a height of 12 cm. When this clock moves parallel to its width with a certain speed u its width and height are the same. Relative to a clock at rest, how much time does it take for the moving clock to advance by 1.0 s?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Subatomic particles called pions are created when protons, accelerated to speeds very near c in a particle accelerator, smash into the nucleus of a target atom. Charged pions are unstable particles that decay into muons with a half-life of 1.8 x 10-8 s. Pions have been investigated for use in cancer treatment because they pass through tissue doing minimal damage until they decay, releasing significant energy at that point. The speed of the pions can be adjusted so that the most likely place for the decay is in a tumor.Suppose pions are created in an accelerator, then directed into a medical bay 30 m away. The pions travel at the very high speed of 0.99995c. Without time dilation, half of the pions would have decayed after traveling only 5.4 m, not far enough to make it to the medical bay. Time dilation allows them to survive long enough to reach the medical bay, enter tissue, slow down, and then decay where they are needed, in a tumor.
According to the pion, what is the distance it…
Subatomic particles called pions are created when protons, accelerated to speeds very near c in a particle accelerator, smash into the nucleus of a target atom. Charged pions are unstable particles that decay into muons with a half-life of 1.8 x 10-8 s. Pions have been investigated for use in cancer treatment because they pass through tissue doing minimal damage until they decay, releasing significant energy at that point. The speed of the pions can be adjusted so that the most likely place for the decay is in a tumor.Suppose pions are created in an accelerator, then directed into a medical bay 30 m away. The pions travel at the very high speed of 0.99995c. Without time dilation, half of the pions would have decayed after traveling only 5.4 m, not far enough to make it to the medical bay. Time dilation allows them to survive long enough to reach the medical bay, enter tissue, slow down, and then decay where they are needed, in a tumor.
What is the half-life of a pion in the reference…
Subatomic particles called pions are created when protons, accelerated to speeds very near c in a particle accelerator, smash into the nucleus of a target atom. Charged pions are unstable particles that decay into muons with a half-life of 1.8 x 10-8 s. Pions have been investigated for use in cancer treatment because they pass through tissue doing minimal damage until they decay, releasing significant energy at that point. The speed of the pions can be adjusted so that the most likely place for the decay is in a tumor.Suppose pions are created in an accelerator, then directed into a medical bay 30 m away. The pions travel at the very high speed of 0.99995c. Without time dilation, half of the pions would have decayed after traveling only 5.4 m, not far enough to make it to the medical bay. Time dilation allows them to survive long enough to reach the medical bay, enter tissue, slow down, and then decay where they are needed, in a tumor.
The proton collision that creates the pion also…
Chapter 29 Solutions
Physics (5th Edition)
Ch. 29.1 - Observer 1 shines a beam of light toward observer...Ch. 29.2 - Two identical atomic clocks are manufactured at a...Ch. 29.3 - A horizontal meterstick moving to the right is...Ch. 29.4 - A passenger jogs toward the front of a train with...Ch. 29.5 - Is the relativistic momentum of an object moving...Ch. 29.6 - An object of mass m moves with speed u. Rank the...Ch. 29.7 - If the speed of light were infinite, would the...Ch. 29.8 - Prob. 8EYUCh. 29 - Some distant galaxies are moving away from us at...Ch. 29 - Prob. 2CQ
Ch. 29 - When we view a distant galaxy, we notice that the...Ch. 29 - Prob. 4CQCh. 29 - Give an argument that shows that an object of...Ch. 29 - Section 29-1 The Postulates of Special Relativity ...Ch. 29 - Albert is piloting his spaceship heading east with...Ch. 29 - A street performer tosses a ball straight up into...Ch. 29 - Prob. 4PCECh. 29 - Predict/Explain Suppose you are a traveling...Ch. 29 - A neon sign in front of a cafe flashes on and off...Ch. 29 - A lighthouse sweeps its beam of light around in a...Ch. 29 - As a spaceship flies past with speed u, you...Ch. 29 - How fast should your spacecraft travel so that...Ch. 29 - Usain Bon set a world record for the 100-m dash on...Ch. 29 - (a) Find the average distance (in the Earths frame...Ch. 29 - Referring to Example 29-3, (a) how much does Benny...Ch. 29 - The Pi Meson An elementary particle called a pi...Ch. 29 - Predict/Calculate (a) Is it possible for you to...Ch. 29 - In order to cross the galaxy quickly, a spaceship...Ch. 29 - An observer moving toward Earth with a speed of...Ch. 29 - Predict/Calculate An astronaut moving with a speed...Ch. 29 - BIO Newly sprouted sunflowers can grow at the rate...Ch. 29 - As measured in earths frame of reference, the...Ch. 29 - Captain Jean Luc is piloting the USS Enterprise...Ch. 29 - Prob. 21PCECh. 29 - How fast does a 275-m spaceship move relative to...Ch. 29 - Suppose the speed of light in a vacuum were only...Ch. 29 - A rectangular painting is W = 117 cm wide and H =...Ch. 29 - Prob. 25PCECh. 29 - A cubical box is 0.75 m on a side (a) What are the...Ch. 29 - When parked, your car is 5 8 m long....Ch. 29 - An astronaut travels to a distant star with a...Ch. 29 - Predict/Calculate Laboratory measurements show...Ch. 29 - You and a friend travel through space in identical...Ch. 29 - A ladder 5.0 m long leans against a wall inside a...Ch. 29 - When traveling past an observer with a relative...Ch. 29 - Predict/Calculate The starships Picard and La...Ch. 29 - A spaceship moving toward Earth with a speed of...Ch. 29 - Suppose the probe in Problem 34 is launched in the...Ch. 29 - Suppose the speed of light is 35 mi/h. A paper...Ch. 29 - Two asteroids head straight for Earth from the...Ch. 29 - Two rocket ships approach Earth from opposite...Ch. 29 - A spaceship and an asteroid are moving in the same...Ch. 29 - An electron moves to the right in a laboratory...Ch. 29 - A uranium nucleus is traveling at 0.95c in the...Ch. 29 - Predict/Calculate Two rocket ships are racing...Ch. 29 - A 2.8 106-kg spaceship moves away from Earth with...Ch. 29 - An asteroid with a mass of 8.2 1011-kg is...Ch. 29 - An object has a relativistic momentum that is 8.50...Ch. 29 - A football player with a mass of 88 kg and a speed...Ch. 29 - A space probe with a rest mass of 8 2 107 kg and...Ch. 29 - At what speed does the classical momentum, p = mu,...Ch. 29 - A proton has 1836 times the rest mass of an...Ch. 29 - Star A has a mass of 3 0 1023 kg kg and is...Ch. 29 - Particles A through D have the following rest...Ch. 29 - Find the work that must be done on a proton to...Ch. 29 - A spring with a force constant of 595 N/m is...Ch. 29 - The 15 gallons of gasoline required to refuel your...Ch. 29 - Prob. 55PCECh. 29 - When a proton encounters an antiproton, the two...Ch. 29 - If a neutron moves with a speed of 0.99c, what are...Ch. 29 - A rocket with a mass of 2.7 106 kg has a...Ch. 29 - An object has a total energy that is 4.8 times its...Ch. 29 - Prob. 60PCECh. 29 - A nuclear power plant converts fuel energy at an...Ch. 29 - Prob. 62PCECh. 29 - What is the percent difference between the...Ch. 29 - Predict/Calculate Consider a baseball with a rest...Ch. 29 - A lump of putty with a mass of 0.240 kg and a...Ch. 29 - Prob. 66PCECh. 29 - Prob. 67PCECh. 29 - Prob. 68GPCh. 29 - CE You are standing next to a runway as an...Ch. 29 - CE An apple drops from the bough of a tree to the...Ch. 29 - CE Predict/Explain Consider two apple pies that...Ch. 29 - CE Predict/Explain An uncharged capacitor is...Ch. 29 - Cosmic Rays Protons in cosmic rays have been...Ch. 29 - At the CERN particle accelerator in Geneva,...Ch. 29 - A 14C nucleus, initially at rest, emits a beta...Ch. 29 - A clock at rest has a rectangular shape, with a...Ch. 29 - A starship moving toward Earth with a speed of...Ch. 29 - Prob. 78GPCh. 29 - A 2.5-m titanium rod in a moving spacecraft is at...Ch. 29 - Electrons are accelerated from rest through a...Ch. 29 - The rest energy, m0c2, of a particle with a...Ch. 29 - Predict/Calculate Consider a relativistic air...Ch. 29 - Predict/Calculate In Conceptual Example 29-7...Ch. 29 - A pulsar is a collapsed, rotating star that sends...Ch. 29 - Prob. 85GPCh. 29 - Decay of the Particle When at rest, the particle...Ch. 29 - Prob. 87PPCh. 29 - Prob. 88PPCh. 29 - Prob. 89PPCh. 29 - Prob. 90PPCh. 29 - Referring to Example 29-9 The Picard approaches...Ch. 29 - Referring to Example 29-9 Faraway Point starbase...
Additional Science Textbook Solutions
Find more solutions based on key concepts
With the initial appearance of the feature we call Now Solve This, a short introduction is in order. The featur...
Concepts of Genetics (12th Edition)
For the reaction shown, find the limiting reactant for each of the initial quantities of reactants. 4Al(s)+3O2(...
Introductory Chemistry (6th Edition)
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology (7th Edition)
Which type of cartilage is most plentiful in the adult body?
Anatomy & Physiology (6th Edition)
Analyzing ecological footprints reveals that (A) Earth's carrying capacity would increase if per capita meat co...
Campbell Biology (11th Edition)
Two culture media were inoculated with four different bacteria. After incubation, the following results were ob...
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) Does motion affect the rate of a clock as measured by an observer moving with it? (b) Does motion affect how an observer moving relative to a clock measures its rate?arrow_forward(a) Find the value of for the following situation. An astronaut measures the length of his spaceship to be 100 m, while an observer measures it to be 25.0 m. (b) What is the of the spaceship relative to Earth?arrow_forward(a) All but the closest galaxies are receding from our own Milky Way Galaxy. If a galaxy 12.0x109ly away is receding from us at 0.900c, at what velocity relative to us must we send an exploratory probe to approach the other galaxy at 0.990c as measured from that galaxy? (b) How long will it take the probe to reach the other galaxy as measured from Earth? You may assume that the velocity of the other galaxy remains constant. (c) How long will it then take for a radio signal to be beamed back? (All of this is possible in principle, but not practical.)arrow_forward
- Suppose an astronaut is moving relative to Earth at a significant fraction of the speed of light. (a) Does he observe the rate of his to have slowed? (b) What change in the rate of earthbound does he see? (c) Does his ship seem to him to shorten? (d) What about the distance between two stars that lie in the direction of his motion? (e) Do he and an earthbound observer agree on his velocity relative to Earth?arrow_forwardSuppose an astronaut is moving relative to the Earth at a significant fraction of the speed of light. (a) Does he observe the rate of his clocks to have slowed? (b) What change in the rate of Earth-bound clocks does he see? (c) Does his ship seem to him to shorten? (d) What about the distance between stars that lie on lines parallel to his motion? (e) Do he and an Earth-bound observer agree on his velocity relative to the Earth?arrow_forwardA rod of length L0 moving with a speed v along the horizontal direction makes an angle 0 with respect to the x axis. (a) Show that the length of the rod as measured by a stationary observer is L = L0[1 (v2/c2)cos2 0]1/2. (b) Show that the angle that the rod makes with the x axis is given by tan = tan 0. These results show that the rod is both contracted and rotated. (Take the lower end of the rod to be at the origin of the primed coordinate system.)arrow_forward
- An observer in a coasting spacecraft moves toward a mirror at speed v relative to the reference frame labeled S in Figure P39.85. The mirror is stationary with respect to S. A light pulse emitted by the spacecraft travels toward the mirror and is reflected back to the spacecraft. The spacecraft is a distance d from the mirror (as measured by observers in S) at the moment the light pulse leaves the spacecraft. What is the total travel time of the pulse as measured by observers in (a) the S frame and (b) the spacecraft?arrow_forwardSubatomic particles called pions are created when protons, accelerated to speeds very near c in a particle accelerator, smash into the nucleus of a target atom. Charged pions are unstable particles that decay into muons with a half-life of 1.8 x 10-8 s. Pions have been investigated for use in cancer treatment because they pass through tissue doing minimal damage until they decay, releasing significant energy at that point. The speed of the pions can be adjusted so that the most likely place for the decay is in a tumor.Suppose pions are created in an accelerator, then directed into a medical bay 30 m away. The pions travel at the very high speed of 0.99995c. Without time dilation, half of the pions would have decayed after traveling only 5.4 m, not far enough to make it to the medical bay. Time dilation allows them to survive long enough to reach the medical bay, enter tissue, slow down, and then decay where they are needed, in a tumor. If the pion slows down to 0.99990c, about what…arrow_forwardA spacecraft flies past the earth in the direction toward the moon, a distance of 3.84 * 10^5 km. As measured by your clock on the earth, it takes 6.00 s for the clock on the spacecraft to tick off 2.00 s. You measure the length of the spacecraft in the direction of its motion to be 24.0 m. As measured by an astronaut at rest on the spacecraft, what are (a) the distance from the earth to the moon and (b) the length of the spacecraft?arrow_forward
- A spacecraft flies past the earth in the direction toward the moon, a distance of 3.84 x 105 km. As measured by your clock on the earth, it takes 6.00 s for the clock on the spacecraft to tick off 2.00 s. You measure the length of the spacecraft in the direction of its motion to be 24.0 m. As measured by an astronaut at rest on the spacecraft, what are (a) the distance from the earth to the moon and (b) the length of the spacecraft?arrow_forwardYou and your secret celebrity crush pass each other in rockets that are each traveling 0.56c relative to the other. Your secret celebrity crush takes a nap and you decide to time how long the nap takes. In your frame, the nap takes 1.7 h. How long was the nap in your secret celebrity crush's frame? Unbeknownst to you, your secret celebrity crush's agent is onboard the celebrity's rocket and saw you timing the nap. Concerned, the agent decides to time how long you were timing the nap. In the agent's frame, how long were you timing your secret celebrity crush's nap?arrow_forwardBecause of the earth’s rotation, a person living on top of a mountain moves at a faster speed than someone at sea level. The mountain dweller’s clocks thus run slowly compared to those at sea level. If the average life span of a hermit is 80 years, on average how much longer would a hermit dwelling on the top of a 3000-m-high mountain live compared to a sea- level hermit?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY