(a)
The direction of magnetic force exerted on wire segment
(a)
Answer to Problem 52P
The direction of magnetic force exerted on wire segment
Explanation of Solution
Write the expression to calculate the magnetic force exerted on
Here,
Write the expression to calculate the resultant magnetic field.
Here,
Conclusion:
Substitute
Substitute
Therefore, the direction of magnetic force exerted on wire segment
(b)
The direction of torque associated with this force.
(b)
Answer to Problem 52P
The direction of torque associated with this force is along the negative
Explanation of Solution
Write the expression to calculate the torque.
Here,
Conclusion:
Substitute
Therefore, the direction of torque associated with this force is along the negative
(c)
Write the expression to calculate the magnetic force exerted on
(c)
Answer to Problem 52P
The direction of magnetic force exerted on wire segment
Explanation of Solution
Write the expression to calculate the magnetic force exerted on
Here,
Conclusion:
Substitute
Therefore, the direction of magnetic force exerted on wire segment
(d)
The direction of torque associated with this force.
(d)
Answer to Problem 52P
The direction of torque associated with this force is along the negative
Explanation of Solution
Write the expression to calculate the torque.
Here,
Conclusion:
Substitute
Therefore, the direction of torque associated with this force is along the negative
(e)
Whether the obtained forces combine to rotate the loop along the
(e)
Answer to Problem 52P
The obtained forces cannot combine to rotate the loop along the
Explanation of Solution
Since, the magnitude of magnetic forces on the segments
Hence, the net force on combining both the forces, the resultant force becomes zero.
Thus, the magnetic forces cannot rotate the loop along the
Therefore, the obtained forces cannot combine to rotate the loop along the
(f)
Whether the obtained forces can affect the motion of loop in anyway.
(f)
Answer to Problem 52P
The obtained forces cannot affect the motion of loop in anyway
Explanation of Solution
Since, the magnetic field, the current and the length is constant, Hence, the magnetic force obtained will be constant.
So, the magnetic forces will be able to rotate the loop only and shall not affect the motion of the loop in anyway.
Therefore, the obtained forces cannot affect the motion of loop in anyway
(g)
The direction of magnetic force exerted on wire segment
(g)
Answer to Problem 52P
The direction of magnetic force exerted on wire segment
Explanation of Solution
Write the expression to calculate the magnetic force exerted on
Here,
Conclusion:
Substitute
Therefore, the direction of magnetic force exerted on wire segment
(h)
The direction of torque associated with this force.
(h)
Answer to Problem 52P
The direction of torque associated with this force is along the negative
Explanation of Solution
Write the expression to calculate the torque.
Here,
Conclusion:
Substitute
Therefore, the direction of torque associated with this force is along the negative
(i)
The direction of torque on segment
(i)
Answer to Problem 52P
The direction of the torque associated with segment cannot be defined because the torque on segment
Explanation of Solution
Since, the lever arm on the segment
Therefore, the direction of the torque associated with segment cannot be defined because the torque on segment
(j)
The direction of rotation of the loop when it is released from rest.
(j)
Answer to Problem 52P
The rotation of loop will be in counter clockwise direction about the
Explanation of Solution
The direction of magnetic force exerted on wire segment
The direction of torque on wire segment
The direction of magnetic force exerted on wire segment
The direction of torque on wire segment
This signifies that the torque on segment
Therefore, the rotation of loop will be in counter clockwise direction about the
(k)
The magnitude of the magnetic moment of the loop.
(k)
Answer to Problem 52P
The magnitude of the magnetic moment of the loop is
Explanation of Solution
Write the expression to calculate the area of the loop.
Here,
Write the expression to calculate the magnetic moment of the loop.
Here,
Substitute
Conclusion:
Substitute
Therefore, the magnitude of the magnetic moment of the loop is
(l)
The angle between the magnetic moment vector and the magnetic field.
(l)
Answer to Problem 52P
The magnitude of the magnetic moment of the loop is
Explanation of Solution
The current flowing through the loop is in clockwise direction. So by the right hand thumb rule, the direction of magnetic field will be in the downward direction along the negative
So the angle between the magnetic moment vector and the magnetic field will be,
Here,
Conclusion:
Substitute
Therefore, the angle between the magnetic moment vector and the magnetic field is
(l)
The torque in the loop.
(l)
Answer to Problem 52P
The torque in the loop is
Explanation of Solution
Write the expression to calculate the torque on the loop.
Here,
Conclusion:
Substitute
Therefore, the torque in the loop is
Want to see more full solutions like this?
Chapter 29 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
- Statistical thermodynamics. The number of imaginary replicas of a system of N particlesa) cannot be greater than Avogadro's numberb) must always be greater than Avogadro's number.c) has no relation to Avogadro's number.arrow_forwardLab-Based Section Use the following information to answer the lab based scenario. A student performed an experiment in an attempt to determine the index of refraction of glass. The student used a laser and a protractor to measure a variety of angles of incidence and refraction through a semi-circular glass prism. The design of the experiment and the student's results are shown below. Angle of Incidence (°) Angle of Refraction (º) 20 11 30 19 40 26 50 31 60 36 70 38 2a) By hand (i.e., without using computer software), create a linear graph on graph paper using the student's data. Note: You will have to manipulate the data in order to achieve a linear function. 2b) Graphically determine the index of refraction of the semi-circular glass prism, rounding your answer to the nearest hundredth.arrow_forwardUse the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forward
- Use the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forwardNo chatgpt pls will upvotearrow_forwardA beam of alpha-particles of energy 7.3MeV is used.The protons emitted at an angle of zero degree are found to have energy of 9.34MeV.Find the Q-value of this reaction .arrow_forward
- An aluminum rod and a copper rod have the same length of 100cm at 5C. At what temperatures would one of the rods be 0.5 mm longer than the other? Which rod is longer at such temperature?arrow_forwardROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20arrow_forwardQuestion B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…arrow_forward
- SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]arrow_forwardPage 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…arrow_forwardHow does boiling point of water decreases as the altitude increases?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning