EBK PHYSICS FOR SCIENTISTS AND ENGINEER
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
1st Edition
ISBN: 9780100546714
Author: Katz
Publisher: YUZU
bartleby

Videos

Textbook Question
Book Icon
Chapter 29, Problem 45PQ

Figure P29.45 shows five resistors connected between terminals a and b.

  1. a. What is the equivalent resistance of this combination of resistors?
  2. b. What is the current through each resistor if a 24.0-V battery is connected across the terminals?

Chapter 29, Problem 45PQ, Figure P29.45 shows five resistors connected between terminals a and b. a. What is the equivalent

(a)

Expert Solution
Check Mark
To determine

Find the equivalent resistance of the combination of the resistors.

Answer to Problem 45PQ

The equivalent resistance of the combination is 14.7Ω_.

Explanation of Solution

Consider R1 as the 20Ω resistance, R2 as the 5Ω resistance, R3 as the 9Ω resistance, R4 as the 2Ω resistance and R5 as the 12Ω resistance.

EBK PHYSICS FOR SCIENTISTS AND ENGINEER, Chapter 29, Problem 45PQ

Refer to figure above, the resistance R1 and R2 are in parallel.

Write the equivalent resistance across the two resistances as.

  1Req=1R1+1R2                                                                                                (I)

Here, Req is the equivalent parallel resistance of R1 and R2.

Further, the resistances R4 and R5 are in parallel.

Write the equivalent resistance across the two resistances as.

  1Req=1R4+1R5                                                                                     (II)

Here, Req is the equivalent parallel resistance of R4 and R5.

The circuit has Req , R3 and Req are three resistances connected in series.

Write the equivalent resistance of the circuit as.

  Rtotal=Req+R3+Req                                                                                   (III)

Here, Rtotal is the equivalent series resistance of circuit.

Conclusion:

Substitute 20Ω for R1 and 5Ω for R2 in equation (I).

  1Req=120Ω+15Ω1Req=25100Ω

Rearrange the terms in above equation

  Req=4Ω

Substitute 2Ω as R4 and 12Ω as R5 in equation (II).

  1Req=12Ω+112Ω1Req=1424Ω

Rearrange the terms in above equation

  Req=1.7Ω

Substitute 4Ω as Req, 9Ω as R3 and 1.7Ω as Req in equation (III).

  Rtotal=4Ω+9Ω+1.7Ω=14.7Ω

Thus, the equivalent resistance of the combination is 14.7Ω_.

(b)

Expert Solution
Check Mark
To determine

Find the current in each resistor in the circuit.

Answer to Problem 45PQ

The current flowing through 20Ω resistor is 0.326A_, the current flowing through 5Ω resistor is 1.30A_, the current flowing through 9Ω resistor is 1.63A_, the current flowing through 2Ω resistor is 1.40A_ and the current flowing through 12Ω resistor is 0.233A_.

Explanation of Solution

Write the expression for the current drawn by the circuit from the battery as.

  I=εRtotal                                                                                                      (IV)

Here, I is the current drawn, ε is the Emf of the battery and Rtotal is the equivalent resistance of circuit.

Write the expression for the voltage drop across R1 and R2 as.

  VReq=IReq                                                                                                     (V)

Here VReq is the voltage drop across Req.

Write the expression for the voltage drop across R4 and R5 as.

  VReq'=IReq                                                                                                   (VI)

Here VReq' is the voltage drop across Req.

In a parallel connection, the voltage drop across all the elements remains same. Therefore the voltage drop across R1 and R2 is same as VReq and the voltage drop across R4 and R5 is same as VReq.

Write the expression for the current through R1 and R2 as.

  I'=VReqR                                                                                                     (VII)

Here I' is the current through respective resistor.

Write the expression for the current through R4 and R5 as.

  I''=VReqR                                                                                                   (VIII)

Here I'' is the current through respective resistor and is the value of respective resistance.

The resistance R3 is connected in series to the circuit so the current flowing through the circuit will be the same as the current through Req.

Therefore, the current through the resistance R3 is same as I (current drawn from battery).

Conclusion:

Substitute 24V for ε and 14.7Ω for Rtotal in equation (IV).

  I=24V14.7Ω=1.63A

Substitute 1.63A for I and 4Ω for Req in the equation (V).

  VReq=(1.63A)(4Ω)=6.52V

Substitute 1.63A for I and 1.7Ω for Req in equation (VI).

    VReq'=(1.63A)(1.7Ω)=2.77 Ω2.8 Ω

Substitute I1 for I', 6.52V for VReq and 20Ω for R in equation (VII).

  I1=6.52V20Ω=0.326A

Substitute I2 for I', 6.52V for VReq and 5Ω for R in equation (IX).

  I2=6.52V5Ω=1.30A

The current through R3 is same as I .

  I3=1.63A

Substitute I4 for I'', 2.78V for VReq and 2Ω for R in equation (VIII).

  I4=2.8V2Ω=1.40A

Substitute I5 for I'', 2.78V for VReq and 12Ω for R in equation (VIII).

  I5=2.8V12Ω=0.233A

Thus, the current flowing through 20Ω resistor is 0.326A_, the current flowing through 5Ω resistor is 1.30A_, the current flowing through 9Ω resistor is 1.63A_, the current flowing through 2Ω resistor is 1.40A_ and the current flowing through 12Ω resistor is 0.233A_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The de-excitation of a state occurs by competing emission and relaxation processes. If the relaxation mechanisms are very effective:a) the emission of radiation is largeb) the emission of radiation is smallc) the emission occurs at a shorter wavelengthd) the de-excitation occurs only by emission processes
m C A block of mass m slides down a ramp of height hand collides with an identical block that is initially at rest. The two blocks stick together and travel around a loop of radius R without losing contact with the track. Point A is at the top of the loop, point B is at the end of a horizon- tal diameter, and point C is at the bottom of the loop, as shown in the figure above. Assume that friction between the track and blocks is negligible. (a) The dots below represent the two connected blocks at points A, B, and C. Draw free-body dia- grams showing and labeling the forces (not com ponents) exerted on the blocks at each position. Draw the relative lengths of all vectors to reflect the relative magnitude of the forces. Point A Point B Point C (b) For each of the following, derive an expression in terms of m, h, R, and fundamental constants. i. The speed of moving block at the bottom of the ramp, just before it contacts the stationary block ii. The speed of the two blocks immediately…
The velocity of an elevator is given by the graph shown. Assume the positive direction is upward. Velocity (m/s) 3.0 2.5 2.0 1.5 1.0 0.5 0 0 5.0 10 15 20 25 Time (s) (a) Briefly describe the motion of the elevator. Justify your description with reference to the graph. (b) Assume the elevator starts from an initial position of y = 0 at t=0. Deriving any numerical values you need from the graph: i. Write an equation for the position as a function of time for the elevator from t=0 to t = 3.0 seconds. ii. Write an equation for the position as a function of time for the elevator from t = 3.0 seconds to t = 19 seconds. (c) A student of weight mg gets on the elevator and rides the elevator during the time interval shown in the graph. Consider the force of con- tact, F, between the floor and the student. How Justify your answer with reference to the graph does F compare to mg at the following times? and your equations above. i. = 1.0 s ii. = 10.0 s

Chapter 29 Solutions

EBK PHYSICS FOR SCIENTISTS AND ENGINEER

Ch. 29 - Prob. 5PQCh. 29 - Prob. 6PQCh. 29 - A real battery (modeled as an ideal emf device in...Ch. 29 - Prob. 8PQCh. 29 - Two circuits made up of identical ideal emf...Ch. 29 - Prob. 10PQCh. 29 - Prob. 11PQCh. 29 - Prob. 12PQCh. 29 - Eight real batteries, each with an emf of 5.00 V...Ch. 29 - Prob. 14PQCh. 29 - Prob. 15PQCh. 29 - Prob. 16PQCh. 29 - Prob. 17PQCh. 29 - Prob. 18PQCh. 29 - Prob. 19PQCh. 29 - An ideal emf device with emf is connected to two...Ch. 29 - Prob. 21PQCh. 29 - Prob. 22PQCh. 29 - Prob. 23PQCh. 29 - Prob. 24PQCh. 29 - Prob. 25PQCh. 29 - Prob. 26PQCh. 29 - Determine the currents through the resistors R2,...Ch. 29 - The emf devices in the circuits shown in Figure...Ch. 29 - Prob. 29PQCh. 29 - Prob. 30PQCh. 29 - Prob. 31PQCh. 29 - Prob. 32PQCh. 29 - Prob. 33PQCh. 29 - Prob. 34PQCh. 29 - A Figure P29.35 shows a combination of six...Ch. 29 - A Each resistor shown in Figure P29.36 has...Ch. 29 - Each resistor shown in Figure P29.36 has a...Ch. 29 - Prob. 38PQCh. 29 - Prob. 39PQCh. 29 - The emf in Figure P29.40 is 4.54 V. The...Ch. 29 - Figure P29.41 shows three resistors (R1 = 14.0 ,...Ch. 29 - Figure P29.42 shows five resistors and two...Ch. 29 - The emfs in Figure P29.43 are 1 = 6.00 V and 2 =...Ch. 29 - Prob. 44PQCh. 29 - Figure P29.45 shows five resistors connected...Ch. 29 - Figure P29.46 shows a circuit with a 12.0-V...Ch. 29 - Two ideal emf devices are connected to a set of...Ch. 29 - Two ideal emf devices are connected to a set of...Ch. 29 - Three resistors with resistances R1 = R/2 and R2 =...Ch. 29 - Prob. 51PQCh. 29 - Prob. 52PQCh. 29 - Prob. 53PQCh. 29 - Prob. 55PQCh. 29 - At time t = 0, an RC circuit consists of a 12.0-V...Ch. 29 - A 210.0- resistor and an initially uncharged...Ch. 29 - Prob. 58PQCh. 29 - A real battery with internal resistance 0.500 and...Ch. 29 - Figure P29.60 shows a simple RC circuit with a...Ch. 29 - Prob. 61PQCh. 29 - Prob. 62PQCh. 29 - Prob. 63PQCh. 29 - Ralph has three resistors, R1, R2, and R3,...Ch. 29 - Prob. 65PQCh. 29 - An ideal emf device is connected to a set of...Ch. 29 - Prob. 67PQCh. 29 - An ideal emf device (24.0 V) is connected to a set...Ch. 29 - Prob. 69PQCh. 29 - What is the equivalent resistance between points a...Ch. 29 - A capacitor with initial charge Q0 is connected...Ch. 29 - Prob. 73PQCh. 29 - Prob. 74PQCh. 29 - Prob. 75PQCh. 29 - Prob. 76PQCh. 29 - Figure P29.77 shows a circuit with two batteries...Ch. 29 - In the RC circuit shown in Figure P29.78, an ideal...Ch. 29 - Prob. 79PQCh. 29 - Calculate the equivalent resistance between points...Ch. 29 - In Figure P29.81, N real batteries, each with an...Ch. 29 - Prob. 82PQCh. 29 - Prob. 83PQCh. 29 - Prob. 84PQCh. 29 - Figure P29.84 shows a circuit that consists of two...Ch. 29 - Prob. 86PQCh. 29 - Prob. 87PQCh. 29 - Prob. 88PQCh. 29 - Prob. 89PQCh. 29 - Prob. 90PQCh. 29 - Prob. 91PQCh. 29 - Prob. 92PQCh. 29 - Prob. 93PQCh. 29 - Prob. 94PQCh. 29 - Prob. 95PQ
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
How To Solve Any Resistors In Series and Parallel Combination Circuit Problems in Physics; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=eFlJy0cPbsY;License: Standard YouTube License, CC-BY