Predict/Calculate Two rocket ships are racing toward Earth, as shown in Figure 29-34 Ship A is in the lead, approaching the Earth at 0.80c and separating from ship B with a relative speed of 0.50c. (a) As seen from Earth, what is the speed, u, of ship B? (b) If ship A increases its speed by 0.10c relative to the Earth, does the relative speed between ship A and ship B increase by 0.10c, by more than 0.10c, or by less than 0.10c? Explain (c) Find the relative speed between ships A and B for the situation described in part (b).
Figure 29-34
Problem
Want to see the full answer?
Check out a sample textbook solutionChapter 29 Solutions
EP PHYSICS -MOD.MASTERING (18W)
Additional Science Textbook Solutions
Biology: Life on Earth (11th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Cosmic Perspective Fundamentals
College Physics: A Strategic Approach (3rd Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Anatomy & Physiology (6th Edition)
- A pulsar is a stellar object that emits light in short bursts. Suppose a pulsar with a speed of 0.950c approaches Earth, and a rocket with a speed of 0.995c heads toward the pulsar. (Both speeds are measured in Earth's frame of reference.) If the pulsar emits 10.0 pulses per second in its own frame of reference, at what rate are the pulses emitted in the rockets frame of reference?arrow_forwardTwo powerless rockets are on a collision course. The rockets are moving with speeds of 0.800c and 0.600c and are initially 2.52 × 1012 m apart as measured by Liz, an Earth observer, as shown in Figure P1.34. Both rockets are 50.0 m in length as measured by Liz. (a) What are their respective proper lengths? (b) What is the length of each rocket as measured by an observer in the other rocket? (c) According to Liz, how long before the rockets collide? (d) According to rocket 1, how long before they collide? (e) According to rocket 2, how long before they collide? (f) If both rocket crews are capable of total evacuation within 90 min (their own time), will there be any casualties? Figure P1.34arrow_forwardTwo planets are on a collision course, heading directly toward each other at 0.250c. A spaceship sent from one planet approaches the second at 0.750c as seen by the second planet. What is the velocity of the ship relative to the first planet?arrow_forward
- Owen and Dina are at rest in frame S, which is moving with a speed of 0.600c with respect to frame S. They play a game of catch while Ed, at rest in frame S, watches the action (Fig. P26.45). Owen throws the ball to Dina with a speed of 0.800c (according to Owen) and their separation (measured in S) is equal to 1.80 1012 m. (a) According to Dina, how fast is the ball moving? (b) According to Dina, what time interval is required for the ball to reach her? According to Ed, (c) how far apart are Owen and Dina, and (d) how fast is the ball moving? Figure. P26.45arrow_forwardOwen and Dina are at rest in frame S. which is moving at 0.600c with respect to frame S. They play a game of catch while Ed. at rest in frame S, watches the action (Fig. P39.91). Owen throws the ball to Dina at 0.800c (according to Owen), and their separation (measured in S') is equal to 1.80 1012 m. (a) According to Dina, how fast is the ball moving? (b) According to Dina, what time interval is required for the ball to reach her? According to Ed, (c) how far apart are Owen and Dina, (d) how fast is the ball moving, and (e) what time interval is required for the ball to reach Dina?arrow_forwardA spacecraft built in the shape of a sphere moves past an observer on the Earth with a speed of 0.500c. What shape does the observer measure for the spacecraft as it goes by? (a) a sphere (b) a cigar shape, elongated along the direction of motion (c) a round pillow shape, flattened along the direction of motion (d) a conical shape, pointing in the direction of motionarrow_forward
- (a) All but the closest galaxies are receding from our own Milky Way Galaxy. If a galaxy 12.0109ly ly away is receding from us at 0. 0.900c, at what velocity relative to us must we send an exploratory probe to approach the other galaxy at 0.990c, as measured from that galaxy? (b) How long will it take the probe to reach the other galaxy as measured from the Earth? You may assume that the velocity of the other galaxy remains constant. (c) How long will it then take for a radio signal to be beamed back? (All of this is possible in principle, but not practical.)arrow_forwardWhen a missile is shot from one spaceship toward another, it leaves the first at 0.950c and approaches the other at 0.750c. What is the relative velocity of the two ships?arrow_forwardAn alien spaceship traveling at 0.600c toward the Earth launches a landing craft. The landing craft travels in the same direction with a speed of 0.800r relative to the mother ship. As measured on the Earth, the spaceship is 0.200 ly from the Earth when the landing craft is launched, (a) What speed do the Earth-based observers measure for the approaching landing craft? What is the distance to the Earth at the moment of the landing craft's launch as measured by the aliens? What travel time is required for the landing craft to reach the Earth as measured by the aliens on the mother ship? (d) If' the landing craft has a mass of 4.00 10s kg. what is its kinetic energy as measured in the Earth reference frame?arrow_forward
- (a) How long would the muon in Example 28.1 have lived as observed on the Earth if its velocity was 0.0500c ? (b) How far would it have traveled as observed on the Earth? (c) What distance is this in the muon's frame?arrow_forwardAn interstellar space probe is launched from Earth. After a brief period of acceleration, it moves with a constant velocity, 70.0% of the speed of light. Its nuclear-powered batteries supply the energy to keep its data transmitter active continuously. The batteries have a lifetime of 15.0 years as measured in a rest frame. (a) How long do the batteries on the space probe last as measured by mission control on Earth? (b) How far is the probe from Earth when its batteries fail as measured by mission control? (c) How far is the probe from Earth as measured by its built-in trip odometer when its batteries fail? (d) For what total time after launch are data received from the probe by mission control? Note dial radio waves travel at the speed of light and fill the space between the probe and Earth at the time the battery fails.arrow_forwardThe proper length of one spaceship is three times that of another. The two spaceships are traveling in the same direction and, while both are passing overhead, an Earth observer measures the two spaceships to have the same length. If the slower spaceship has a speed of 0.350c with respect to Earth, determine the speed of the faster spaceship.arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning