EBK PHYSICS
5th Edition
ISBN: 9780134051796
Author: Walker
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 29, Problem 3PCE
A street performer tosses a ball straight up into the air (event 1) and then catches it in his mouth (event 2) For each of the following observers state whether the time they measure between those two events is the proper time or the dilated time: (a) the street performer; (b) a stationary observer on the other side of the street; (c) a person sitting at home watching the performance on TV; (d) a person observing the performance from a moving car.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An astronaut is traveling at a constant velocity of 0.8 times the speed of light (c = 3 x 10^8 m/s) away from a space station. If the astronaut's clock is ticking normally, but the space station observes their clock to be running slower due to time dilation, calculate the time interval experienced by the astronaut during a 1-hour period according to their own clock.
An event occurs in a reference system at x = 500 m
and t= 0.90 µus. Another
The reference system is moving at a speed of 0.9c on
the positive x axis according to this reference system.
Origins
coincides at time t= 0 and the clock in the second
reference system at the moment the origins coincide
is reset. In what coordinates and time did this event
occur according to the second reference system?
(Ctrl) -
Playing a high-stakes game of basketball with a series of cartoon characters. The court has a total length of 28 meters measured in its own rest frame. The Street Sprinter, an animated lion on your team, can run at a maximum speed of ½ c.
As measured in the rest frame of the court, a player on the opposing side throws a ball
at ¼c from half court. At the same time, the Street Sprinter starts running at full speed
from the full length of the court away. Call this time t=0.
Draw a Space-Time diagram from the rest frame of the court with the Street Sprinter's initial position as the origin.
Mark the following events on it, and find their spacetime coordinates (t,x) in the frame
of the court and (t',x') in the frame of the Street Sprinter:
A: The ball is thrown from half-court.
B: The Street Sprinter takes off from the other side of the court
C: The ball reaches the net
D: The Street Sprinter reaches the net
e) From the perspective of the referee in the court rest frame, does the ball…
Chapter 29 Solutions
EBK PHYSICS
Ch. 29.1 - Observer 1 shines a beam of light toward observer...Ch. 29.2 - Two identical atomic clocks are manufactured at a...Ch. 29.3 - A horizontal meterstick moving to the right is...Ch. 29.4 - A passenger jogs toward the front of a train with...Ch. 29.5 - Is the relativistic momentum of an object moving...Ch. 29.6 - An object of mass m moves with speed u. Rank the...Ch. 29.7 - If the speed of light were infinite, would the...Ch. 29.8 - Prob. 8EYUCh. 29 - Some distant galaxies are moving away from us at...Ch. 29 - Prob. 2CQ
Ch. 29 - When we view a distant galaxy, we notice that the...Ch. 29 - Prob. 4CQCh. 29 - Give an argument that shows that an object of...Ch. 29 - Section 29-1 The Postulates of Special Relativity ...Ch. 29 - Albert is piloting his spaceship heading east with...Ch. 29 - A street performer tosses a ball straight up into...Ch. 29 - Prob. 4PCECh. 29 - Predict/Explain Suppose you are a traveling...Ch. 29 - A neon sign in front of a cafe flashes on and off...Ch. 29 - A lighthouse sweeps its beam of light around in a...Ch. 29 - As a spaceship flies past with speed u, you...Ch. 29 - How fast should your spacecraft travel so that...Ch. 29 - Usain Bon set a world record for the 100-m dash on...Ch. 29 - (a) Find the average distance (in the Earths frame...Ch. 29 - Referring to Example 29-3, (a) how much does Benny...Ch. 29 - The Pi Meson An elementary particle called a pi...Ch. 29 - Predict/Calculate (a) Is it possible for you to...Ch. 29 - In order to cross the galaxy quickly, a spaceship...Ch. 29 - An observer moving toward Earth with a speed of...Ch. 29 - Predict/Calculate An astronaut moving with a speed...Ch. 29 - BIO Newly sprouted sunflowers can grow at the rate...Ch. 29 - As measured in earths frame of reference, the...Ch. 29 - Captain Jean Luc is piloting the USS Enterprise...Ch. 29 - Prob. 21PCECh. 29 - How fast does a 275-m spaceship move relative to...Ch. 29 - Suppose the speed of light in a vacuum were only...Ch. 29 - A rectangular painting is W = 117 cm wide and H =...Ch. 29 - Prob. 25PCECh. 29 - A cubical box is 0.75 m on a side (a) What are the...Ch. 29 - When parked, your car is 5 8 m long....Ch. 29 - An astronaut travels to a distant star with a...Ch. 29 - Predict/Calculate Laboratory measurements show...Ch. 29 - You and a friend travel through space in identical...Ch. 29 - A ladder 5.0 m long leans against a wall inside a...Ch. 29 - When traveling past an observer with a relative...Ch. 29 - Predict/Calculate The starships Picard and La...Ch. 29 - A spaceship moving toward Earth with a speed of...Ch. 29 - Suppose the probe in Problem 34 is launched in the...Ch. 29 - Suppose the speed of light is 35 mi/h. A paper...Ch. 29 - Two asteroids head straight for Earth from the...Ch. 29 - Two rocket ships approach Earth from opposite...Ch. 29 - A spaceship and an asteroid are moving in the same...Ch. 29 - An electron moves to the right in a laboratory...Ch. 29 - A uranium nucleus is traveling at 0.95c in the...Ch. 29 - Predict/Calculate Two rocket ships are racing...Ch. 29 - A 2.8 106-kg spaceship moves away from Earth with...Ch. 29 - An asteroid with a mass of 8.2 1011-kg is...Ch. 29 - An object has a relativistic momentum that is 8.50...Ch. 29 - A football player with a mass of 88 kg and a speed...Ch. 29 - A space probe with a rest mass of 8 2 107 kg and...Ch. 29 - At what speed does the classical momentum, p = mu,...Ch. 29 - A proton has 1836 times the rest mass of an...Ch. 29 - Star A has a mass of 3 0 1023 kg kg and is...Ch. 29 - Particles A through D have the following rest...Ch. 29 - Find the work that must be done on a proton to...Ch. 29 - A spring with a force constant of 595 N/m is...Ch. 29 - The 15 gallons of gasoline required to refuel your...Ch. 29 - Prob. 55PCECh. 29 - When a proton encounters an antiproton, the two...Ch. 29 - If a neutron moves with a speed of 0.99c, what are...Ch. 29 - A rocket with a mass of 2.7 106 kg has a...Ch. 29 - An object has a total energy that is 4.8 times its...Ch. 29 - Prob. 60PCECh. 29 - A nuclear power plant converts fuel energy at an...Ch. 29 - Prob. 62PCECh. 29 - What is the percent difference between the...Ch. 29 - Predict/Calculate Consider a baseball with a rest...Ch. 29 - A lump of putty with a mass of 0.240 kg and a...Ch. 29 - Prob. 66PCECh. 29 - Prob. 67PCECh. 29 - Prob. 68GPCh. 29 - CE You are standing next to a runway as an...Ch. 29 - CE An apple drops from the bough of a tree to the...Ch. 29 - CE Predict/Explain Consider two apple pies that...Ch. 29 - CE Predict/Explain An uncharged capacitor is...Ch. 29 - Cosmic Rays Protons in cosmic rays have been...Ch. 29 - At the CERN particle accelerator in Geneva,...Ch. 29 - A 14C nucleus, initially at rest, emits a beta...Ch. 29 - A clock at rest has a rectangular shape, with a...Ch. 29 - A starship moving toward Earth with a speed of...Ch. 29 - Prob. 78GPCh. 29 - A 2.5-m titanium rod in a moving spacecraft is at...Ch. 29 - Electrons are accelerated from rest through a...Ch. 29 - The rest energy, m0c2, of a particle with a...Ch. 29 - Predict/Calculate Consider a relativistic air...Ch. 29 - Predict/Calculate In Conceptual Example 29-7...Ch. 29 - A pulsar is a collapsed, rotating star that sends...Ch. 29 - Prob. 85GPCh. 29 - Decay of the Particle When at rest, the particle...Ch. 29 - Prob. 87PPCh. 29 - Prob. 88PPCh. 29 - Prob. 89PPCh. 29 - Prob. 90PPCh. 29 - Referring to Example 29-9 The Picard approaches...Ch. 29 - Referring to Example 29-9 Faraway Point starbase...
Additional Science Textbook Solutions
Find more solutions based on key concepts
As genetic testing becomes widespread, medical records will contain the results of such testing. Who should hav...
Concepts of Genetics (12th Edition)
A KNO3 solution containing 45 g of KNO3 per 100 g of water is cooled from 40Cto0C. What happens during cooling?...
Introductory Chemistry (6th Edition)
WHAT IF? Consider two species that diverged while geographically separated but resumed contact before reproduc...
Campbell Biology (11th Edition)
The bioremediation process shown in the photograph is used to remove benzene and other hydrocarbons from soil c...
Microbiology: An Introduction
1.3 Obtain a bottle of multivitamins and read the list of ingredients. What are four chemicals from the list?
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
All of the following terms can appropriately describe humans except: a. primary consumer b. autotroph c. hetero...
Human Biology: Concepts and Current Issues (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An atomic clock is placed in a jet airplane. The clock measures a time interval of 3600 s when the jet moves with a speed of 400 m/s. How much longer or shorter a time interval does an identical clock held by an observer on the ground measure? (Hint: For , γ ≈ 1 + v2/2c2.)arrow_forwardAn observer in a coasting spacecraft moves toward a mirror at speed v relative to the reference frame labeled S in Figure P39.85. The mirror is stationary with respect to S. A light pulse emitted by the spacecraft travels toward the mirror and is reflected back to the spacecraft. The spacecraft is a distance d from the mirror (as measured by observers in S) at the moment the light pulse leaves the spacecraft. What is the total travel time of the pulse as measured by observers in (a) the S frame and (b) the spacecraft?arrow_forward(a) All but the closest galaxies are receding from our own Milky Way Galaxy. If a galaxy 12.0x109ly away is receding from us at 0.900c, at what velocity relative to us must we send an exploratory probe to approach the other galaxy at 0.990c as measured from that galaxy? (b) How long will it take the probe to reach the other galaxy as measured from Earth? You may assume that the velocity of the other galaxy remains constant. (c) How long will it then take for a radio signal to be beamed back? (All of this is possible in principle, but not practical.)arrow_forward
- An observer in reference frame S sees two events as simultaneous. Event A occurs at the point (50.0 m, 0, 0) at the instant 9:00:00 Universal time, 15 January 2001. Event B occurs at the point (150 m, 0, 0) at the same moment. A second observer, moving past with a velocity of , also observes the two events. In her reference frame S′, which event occurred first and what time elapsed between the events?arrow_forwardAn alien spaceship traveling at 0.600c toward the Earth launches a landing craft. The landing craft travels in the same direction with a speed of 0.800c relative to the mother ship. As measured on the Earth, the spaceship is 0.200 ly from the Earth when the landing craft is launched. (a) What speed do the Earth-based observers measure for the approaching landing craft? (b) What is the distance to the Earth at the moment of the landing crafts launch as measured by the aliens? (c) What travel time is required for the landing craft to reach the Earth as measured by the aliens on the mother ship? (d) If the landing craft has a mass of 4.00 105 kg, what is its kinetic energy as measured in the Earth reference frame?arrow_forwardSuppose an astronaut is moving relative to the Earth at a significant fraction of the speed of light. (a) Does he observe the rate of his clocks to have slowed? (b) What change in the rate of Earth-bound clocks does he see? (c) Does his ship seem to him to shorten? (d) What about the distance between stars that lie on lines parallel to his motion? (e) Do he and an Earth-bound observer agree on his velocity relative to the Earth?arrow_forward
- According to special relativity, a particle of rest mass m0 accelerated in one dimension by a force F obeys the equation of motion dp/dt = F. Here p = m0v/(1 –v2/c2)1/2 is the relativistic momentum, which reduces to m0v for v2/c2 << 1. (a) For the case of constant F and initial conditions x(0) = 0 = v(0), find x(t) and v(t). (b) Sketch your result for v(t). (c) Suppose that F/m0 = 10 m/s2 ( ≈ g on Earth). How much time is required for the particle to reach half the speed of light and of 99% the speed of light?arrow_forward(a) All but the closest galaxies are receding from our own Milky Way Galaxy. If a galaxy 12.0109ly ly away is receding from us at 0. 0.900c, at what velocity relative to us must we send an exploratory probe to approach the other galaxy at 0.990c, as measured from that galaxy? (b) How long will it take the probe to reach the other galaxy as measured from the Earth? You may assume that the velocity of the other galaxy remains constant. (c) How long will it then take for a radio signal to be beamed back? (All of this is possible in principle, but not practical.)arrow_forwardAn Earth satellite used in the Global Positioning System moves in a circular orbit with period 11 h 58 min. (a) Determine the radius of its orbit. (b) Determine its speed. (c) The satellite contains an oscillator producing the principal nonmilitary GPS signal. Its frequency is 1 575.42 MHz in the reference frame of the satellite. When it is received on the Earths surface, what is the fractional change in this frequency due to time dilation, as described by special relativity? (d) The gravitational blueshift of the frequency according to general relativity is a separate effect. The magnitude of that fractional change is given by ff=Ugmc2 where Ug/m is the change in gravitational potential energy per unit mass between the two points at which the signal is observed. Calculate this fractional change in frequency. (e) What is the overall fractional change in frequency? Superposed on both of these relativistic effects is a Doppler shift that is generally much larger. It can be a redshift or a blueshift, depending on the motion of a particular satellite relative to a GPS receiver (Fig. P1.39).arrow_forward
- A starship is 1025 ly from the Earth when measured in the rest frame of the Earth. The ship travels at a speed of 0.80c on its way back to the Earth. What is the distance traveled as measured by the crew of the starship?arrow_forwardA spacecraft zooms past the Earth with a constant velocity. An observer on the Earth measures that an undamaged clock on the spacecraft is ticking at one-third the rate of an identical clock on the Earth. What does an observer on the spacecraft measure about the Earth-based clocks ticking rate? (a) It runs more than three times faster than his own clock. (b) It runs three times faster than his own. (c) It runs at the same rate as his own. (d) It runs at one-third the rate of his own. (e) It runs at less than one-third the rate of his own.arrow_forwardA rod of length L0 moving with a speed v along the horizontal direction makes an angle 0 with respect to the x axis. (a) Show that the length of the rod as measured by a stationary observer is L = L0[1 (v2/c2)cos2 0]1/2. (b) Show that the angle that the rod makes with the x axis is given by tan = tan 0. These results show that the rod is both contracted and rotated. (Take the lower end of the rod to be at the origin of the primed coordinate system.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY