CP CALC In the circuit shown in Fig. P29.47 , the capacitor has capacitance C = 20 μ F and is initially charged to 100 V with the polarity shown. The resistor R 0 has resistance 10 Ω. At time t = 0 the switch S is closed. The small circuit is not connected in any way to the large one. The wire of the small circuit has a resistance of 1.0 Ω/m and contains 25 loops. The large circuit is a rectangle 2.0 m by 4.0 m, while the small one has dimensions a = 10.0 cm and b = 20.0 cm. The distance c is 5.0 cm. (The figure is not drawn to scale.) Both circuits are held stationary. Assume that only the wire nearest the small circuit produces an appreciable magnetic field through it. (a) Find the current in the large circuit 200 μ s after S is closed. (b) Find the current in the small circuit 200 μ s after S is closed. ( Hint: See Exercise 29.7.) (c) Find the direction of the current in the small circuit. (d) Justify why we can ignore the magnetic field from all the wires of the large circuit except for the wire closest to the small circuit. Figure P29.47
CP CALC In the circuit shown in Fig. P29.47 , the capacitor has capacitance C = 20 μ F and is initially charged to 100 V with the polarity shown. The resistor R 0 has resistance 10 Ω. At time t = 0 the switch S is closed. The small circuit is not connected in any way to the large one. The wire of the small circuit has a resistance of 1.0 Ω/m and contains 25 loops. The large circuit is a rectangle 2.0 m by 4.0 m, while the small one has dimensions a = 10.0 cm and b = 20.0 cm. The distance c is 5.0 cm. (The figure is not drawn to scale.) Both circuits are held stationary. Assume that only the wire nearest the small circuit produces an appreciable magnetic field through it. (a) Find the current in the large circuit 200 μ s after S is closed. (b) Find the current in the small circuit 200 μ s after S is closed. ( Hint: See Exercise 29.7.) (c) Find the direction of the current in the small circuit. (d) Justify why we can ignore the magnetic field from all the wires of the large circuit except for the wire closest to the small circuit. Figure P29.47
CP CALC In the circuit shown in Fig. P29.47, the capacitor has capacitance C = 20μF and is initially charged to 100 V with the polarity shown. The resistor R0 has resistance 10 Ω. At time t = 0 the switch S is closed. The small circuit is not connected in any way to the large one. The wire of the small circuit has a resistance of 1.0 Ω/m and contains 25 loops. The large circuit is a rectangle 2.0 m by 4.0 m, while the small one has dimensions a = 10.0 cm and b = 20.0 cm. The distance c is 5.0 cm. (The figure is not drawn to scale.) Both circuits are held stationary. Assume that only the wire nearest the small circuit produces an appreciable magnetic field through it. (a) Find the current in the large circuit 200 μs after S is closed. (b) Find the current in the small circuit 200 μs after S is closed. (Hint: See Exercise 29.7.) (c) Find the direction of the current in the small circuit. (d) Justify why we can ignore the magnetic field from all the wires of the large circuit except for the wire closest to the small circuit.
The figure (Figure 1) shows representations of six
thermodynamic states of the same ideal gas sample.
Figure
1 of 1
Part A
■Review | Constants
Rank the states on the basis of the pressure of the gas sample at each state.
Rank pressure from highest to lowest. To rank items as equivalent, overlap them.
▸ View Available Hint(s)
highest
0
☐ ☐ ☐ ☐ ☐ ☐
Reset
Help
B
F
A
D
E
The correct ranking cannot be determined.
Submit
Previous Answers
× Incorrect; Try Again; 4 attempts remaining
Provide Feedback
lowest
Next >
Part A
m
2πkT
) 3/2
Calculate the integral (v) = f vƒ (v)dv. The function f(v) describing the actual distribution of molecular speeds is called the Maxwell-Boltzmann distribution,
=
ƒ(v) = 4π (· v²e-mv²/2kT
. (Hint: Make the change of variable v² =x and use the tabulated integral foxne
integer and a is a positive constant.)
Express your answer in terms of the variables T, m, and appropriate constants.
-ax dx
n!
-
an+1
where n is a positive
(v)
=
ΕΠΙ ΑΣΦ
Submit Previous Answers Request Answer
?
× Incorrect; Try Again; 4 attempts remaining
Al Study Tools
Looking for some guidance? Let's work through a few related
practice questions before you go back to the real thing.
This won't impact your score, so stop at anytime and ask for
clarification whenever you need it.
Ready to give it a try?
Start
Starter the rule of significant
Chapter 29 Solutions
University Physics with Modern Physics, Books a la Carte Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Campbell Essential Biology with Physiology (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY