A 0.250-m-long bar moves on parallel rails that are connected through a 6.00- Ω resistor, as shown in Fig. E29.33 , so the apparatus makes a complete circuit. You can ignore the resistance of the bar and rails. The circuit is in a uniform magnetic field B = 1.20 T that is directed into the plane of the figure. At an instant when the induced current in the circuit is counterclockwise and equal to 1.75 A, what is the velocity of the bar (magnitude and direction)? Figure E29.33
A 0.250-m-long bar moves on parallel rails that are connected through a 6.00- Ω resistor, as shown in Fig. E29.33 , so the apparatus makes a complete circuit. You can ignore the resistance of the bar and rails. The circuit is in a uniform magnetic field B = 1.20 T that is directed into the plane of the figure. At an instant when the induced current in the circuit is counterclockwise and equal to 1.75 A, what is the velocity of the bar (magnitude and direction)? Figure E29.33
A 0.250-m-long bar moves on parallel rails that are connected through a 6.00- Ω resistor, as shown in Fig. E29.33, so the apparatus makes a complete circuit. You can ignore the resistance of the bar and rails. The circuit is in a uniform magnetic field B = 1.20 T that is directed into the plane of the figure. At an instant when the induced current in the circuit is counterclockwise and equal to 1.75 A, what is the velocity of the bar (magnitude and direction)?
Part A
m
2πkT
) 3/2
Calculate the integral (v) = f vƒ (v)dv. The function f(v) describing the actual distribution of molecular speeds is called the Maxwell-Boltzmann distribution,
=
ƒ(v) = 4π (· v²e-mv²/2kT
. (Hint: Make the change of variable v² =x and use the tabulated integral foxne
integer and a is a positive constant.)
Express your answer in terms of the variables T, m, and appropriate constants.
-ax dx
n!
-
an+1
where n is a positive
(v)
=
ΕΠΙ ΑΣΦ
Submit Previous Answers Request Answer
?
× Incorrect; Try Again; 4 attempts remaining
Al Study Tools
Looking for some guidance? Let's work through a few related
practice questions before you go back to the real thing.
This won't impact your score, so stop at anytime and ask for
clarification whenever you need it.
Ready to give it a try?
Start
Starter the rule of significant
Please solve this problem and give step by step explanations on each step while breaking it down please. Thank you!!
Chapter 29 Solutions
University Physics with Modern Physics, Books a la Carte Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY