(II) A power line carrying a sinusoidally varying current with frequency f = 60 Hz and peak value I 0 = 55 kA runs at a height of 7.0 m across a farmer’s land (Fig. 29–41). The farmer constructs a vertically oriented 2.0-m-high 10-turn rectangular wire coil below the power line. The farmer hopes to use the induced voltage in this coil to power 120-Volt electrical equipment, which requires a sinusoidally varying voltage with frequency f = 60 Hz and peak value V 0 = 170 V. What should the length ℓ of the coil be? Would this be unethical? FIGURE 29–41 Problem 16.
(II) A power line carrying a sinusoidally varying current with frequency f = 60 Hz and peak value I 0 = 55 kA runs at a height of 7.0 m across a farmer’s land (Fig. 29–41). The farmer constructs a vertically oriented 2.0-m-high 10-turn rectangular wire coil below the power line. The farmer hopes to use the induced voltage in this coil to power 120-Volt electrical equipment, which requires a sinusoidally varying voltage with frequency f = 60 Hz and peak value V 0 = 170 V. What should the length ℓ of the coil be? Would this be unethical? FIGURE 29–41 Problem 16.
(II) A power line carrying a sinusoidally varying current with frequency f = 60 Hz and peak value I0 = 55 kA runs at a height of 7.0 m across a farmer’s land (Fig. 29–41). The farmer constructs a vertically oriented 2.0-m-high 10-turn rectangular wire coil below the power line. The farmer hopes to use the induced voltage in this coil to power 120-Volt electrical equipment, which requires a sinusoidally varying voltage with frequency f = 60 Hz and peak value V0 = 170 V. What should the length ℓ of the coil be? Would this be unethical?
At point A, 3.20 m from a small source of sound that is emitting uniformly in all directions, the intensity level is 58.0 dB. What is the intensity of the sound at A? How far from the source must you go so that the intensity is one-fourth of what it was at A? How far must you go so that the sound level is one-fourth of what it was at A?
Make a plot of the acceleration of a ball that is thrown upward at 20 m/s subject to gravitation alone (no drag). Assume upward is the +y direction (and downward negative y).
Lab Assignment #3
Vectors
2. Determine the magnitude and sense of the forces in cables A and B.
30°
30°
300KN
3. Determine the forces in members A and B of the following structure.
30°
B
200kN
Name:
TA:
4. Determine the resultant of the three coplanar forces using vectors. F₁ =500N,
F₂-800N, F, 900N, 0,-30°, 62-50°
30°
50°
F₁ = 500N
= 900N
F₂ = 800N
Chapter 29 Solutions
Physics for Scientists and Engineers with Modern Physics
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY