
Concept explainers
a)
Interpretation:
List the DNA sequences from which the RNA codons were transcribed.
AAU
Concept introduction:
The main function of messenger RNA (mRNA) is to give the direction to biosynthesis of thousands of diverse peptides and proteins required by organisms. The mechanics of protein biosynthesis take place on ribosomes, small granular particles in the cytoplasm of a cell that consist of 60% ribosomal RNA and 40% protein.
In
The sense and the antisense strand in DNA are complemetary to each other. The DNA antisense strand and the newly formed RNA strand are also complementary; the RNA molecule produced during transcription is a copy of the DNA sense strand. That is, the complement of the complement is the same as the original.
Note: The bounded amino acid sequence is always written from 5’→3’ direction. The codon sequences on mRNA are read by tRNA which are having complementary anticodon base.

Answer to Problem 27AP
The base sequence in the original DNA strand can be obtained as:
mRNA strand:
(5’)-AAU-(3’)
The antisense DNA strand will be the complement of mRNA:
Antisense DNA:
(3’)-TTA-(5’)
The base sequence in the original DNA strand can be obtained as:
Explanation of Solution
The original DNA sequence on which mRNA is formed is none other than antisense DNA. mRNA is a complement of antisense DNA which is formed by replacing (A by U, C by G, T by A and G by C).
The base sequence in the original DNA strand can be obtained as:
mRNA strand:
(5’)-AAU-(3’)
The antisense DNA strand will be the complement of mRNA:
Antisense DNA:
(3’)-TTA-(5’)
The base sequence in the original DNA strand can be obtained as:
b)
Interpretation:
List the DNA sequences from which the RNA codons were transcribed.
GAG
Concept introduction:
The main function of messenger RNA (mRNA) is to give the direction to biosynthesis of thousands of diverse peptides and proteins required by organisms. The mechanics of protein biosynthesis take place on ribosomes, small granular particles in the cytoplasm of a cell that consist of 60% ribosomal RNA and 40% protein.
In DNA replication both the strands are copied. The DNA strand that contains gene is called coding strand or sense strand. The DNA strand which gets transcribed is called antisense strand or non-coding strand. During this process only one strand is transcribed into RNA strand.
The sense and the antisense strand in DNA are complemetary to each other. The DNA antisense strand and the newly formed RNA strand are also complementary; the RNA molecule produced during transcription is a copy of the DNA sense strand. That is, the complement of the complement is the same as the original.
Note: The bounded amino acid sequence is always written from 5’→3’ direction. The codon sequences on mRNA are read by tRNA which are having complementary anticodon base.

Answer to Problem 27AP
The base sequence in the original DNA strand can be obtained as:
mRNA strand:
(5’)-GAG-(3’)
The antisense DNA strand will be the complement of mRNA:
Antisense DNA:
(3’)-CTC-(5’)
The base sequence in the original DNA strand can be obtained as:
Explanation of Solution
The original DNA sequence on which mRNA is formed is none other than antisense DNA. mRNA is a complement of antisense DNA which is formed by replacing (A by U, C by G, T by A and G by C).
The base sequence in the original DNA strand can be obtained as:
mRNA strand:
(5’)-GAG-(3’)
The antisense DNA strand will be the complement of mRNA:
Antisense DNA:
(3’)-CTC-(5’)
The base sequence in the original DNA strand can be obtained as:
c)
Interpretation:
List the DNA sequences from which the RNA codons were transcribed.
UCC
Concept introduction:
The main function of messenger RNA (mRNA) is to give the direction to biosynthesis of thousands of diverse peptides and proteins required by organisms. The mechanics of protein biosynthesis take place on ribosomes, small granular particles in the cytoplasm of a cell that consist of 60% ribosomal RNA and 40% protein.
In DNA replication both the strands are copied. The DNA strand that contains gene is called coding strand or sense strand. The DNA strand which gets transcribed is called antisense strand or non-coding strand. During this process only one strand is transcribed into RNA strand.
The sense and the antisense strand in DNA are complemetary to each other. The DNA antisense strand and the newly formed RNA strand are also complementary; the RNA molecule produced during transcription is a copy of the DNA sense strand. That is, the complement of the complement is the same as the original.
Note: The bounded amino acid sequence is always written from 5’→3’ direction. The codon sequences on mRNA are read by tRNA which are having complementary anticodon base.

Answer to Problem 27AP
The base sequence in the original DNA strand can be obtained as:
mRNA strand:
(5’)-UCC-(3’)
The antisense DNA strand will be the complement of mRNA:
Antisense DNA:
(3’)-AGG-(5’)
The base sequence in the original DNA strand can be obtained as:
Explanation of Solution
The original DNA sequence on which mRNA is formed is none other than antisense DNA. mRNA is a complement of antisense DNA which is formed by replacing (A by U, C by G, T by A and G by C).
The base sequence in the original DNA strand can be obtained as:
mRNA strand:
(5’)-UCC-(3’)
The antisense DNA strand will be the complement of mRNA:
Antisense DNA:
(3’)-AGG-(5’)
The base sequence in the original DNA strand can be obtained as:
d)
Interpretation:
List the DNA sequences from which the RNA codons were transcribed.
CAU
Concept introduction:
The main function of messenger RNA (mRNA) is to give the direction to biosynthesis of thousands of diverse peptides and proteins required by organisms. The mechanics of protein biosynthesis take place on ribosomes, small granular particles in the cytoplasm of a cell that consist of 60% ribosomal RNA and 40% protein.
In DNA replication both the strands are copied. The DNA strand that contains gene is called coding strand or sense strand. The DNA strand which gets transcribed is called antisense strand or non-coding strand. During this process only one strand is transcribed into RNA strand.
The sense and the antisense strand in DNA are complemetary to each other. The DNA antisense strand and the newly formed RNA strand are also complementary; the RNA molecule produced during transcription is a copy of the DNA sense strand. That is, the complement of the complement is the same as the original.
Note: The bounded amino acid sequence is always written from 5’→3’ direction. The codon sequences on mRNA are read by tRNA which are having complementary anticodon base.

Answer to Problem 27AP
The base sequence in the original DNA strand can be obtained as:
mRNA strand:
(5’)-CAU-(3’)
The antisense DNA strand will be the complement of mRNA:
Antisense DNA:
(3’)-GTA-(5’)
The base sequence in the original DNA strand can be obtained as:
Explanation of Solution
The original DNA sequence on which mRNA is formed is none other than antisense DNA. mRNA is a complement of antisense DNA which is formed by replacing (A by U, C by G, T by A and G by C).
The base sequence in the original DNA strand can be obtained as:
mRNA strand:
(5’)-CAU-(3’)
The antisense DNA strand will be the complement of mRNA:
Antisense DNA:
(3’)-GTA-(5’)
The base sequence in the original DNA strand can be obtained as:
Want to see more full solutions like this?
Chapter 28 Solutions
OWLv2 with Student Solutions Manual eBook, 4 terms (24 months) Printed Access Card for McMurry's Organic Chemistry, 9th
- Would the following organic synthesis occur in one step? Add any missing products, required catalysts, inorganic reagents, and other important conditions. Please include a detailed explanation and drawings showing how the reaction may occur in one step.arrow_forward(a) Sketch the 'H NMR of the following chemical including the approximate chemical shifts, the multiplicity (splitting) of all signals and the integration (b) How many signals would you expect in the 13C NMR? CH3arrow_forwardDraw the Show the major and minor product(s) for the following reaction mechanisms for both reactions and show all resonance structures for any Explain why the major product is favoured? intermediates H-Brarrow_forward
- 3. Draw ALL THE POSSBILE PRODUCTS AND THE MECHANISMS WITH ALL RESONANCE STRUCTURES. Explain using the resonance structures why the major product(s) are formed over the minor product(s). H₂SO4, HONO CHarrow_forward7. Provide the product(s), starting material(s) and/or condition(s) required for the No mechanisms required. below reaction HO + H-I CI FO Br2, FeBr3 O I-Oarrow_forward6. Design the most efficient synthesis of the following product starting from phenot Provide the reaction conditions for each step (more than one step is required) and explain the selectivity of each reaction. NO MECHANISMS ARE REQUIRED. OH step(s) CIarrow_forward
- What is the skeletal structure of the product of the following organic reaction?arrow_forwardIf a reaction occurs, what would be the major products? Please include a detailed explanation as well as a drawing showing how the reaction occurs and what the final product is.arrow_forwardWhat is the major organic product of the following nucleophilic acyl substitution reaction of an acid chloride below?arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
- Organic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





