PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
6th Edition
ISBN: 9781429206099
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 28, Problem 81P
To determine
The magnetic flux through a rectangular area of given sides and show that the self inductance per unit length of the cable is given by
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 60.0-m length of insulated copper wire is wound toform a solenoid of radius 2.0 cm. The copper wire has a radiusof 0.50 mm. (a) What is the resistance of the wire? (b) Treatingeach turn of the solenoid as a circle, how many turns canbe made with the wire? (c) How long is the resulting solenoid?(d) What is the self-inductance of the solenoid? (e) If the solenoidis attached to a battery with an emf of 6.0 V and internalresistance of 350 mΩ, compute the time constant of the
circuit. (f ) What is the maximum current attained? (g) Howlong would it take to reach 99.9% of its maximum current?(h) What maximum energy is stored in the inductor?
Two solenoids A and B, spaced close to each other and sharing the same cylindrical axis, have 450 and 550 turns, respectively. A current of 2.20 A in solenoid A produces an average flux of 300 μWb through
each turn of A and a flux of 90.0 μWb through each turn of B.
(a) Calculate the mutual inductance of the two solenoids.
mH
Me
(b) What is the inductance of A?
mH
(c) What is the magnitude of the emf that is induced in B when the current in A changes at the rate of 0.500 A/s?
mV
Help?
An unbounded conductor and a triangular contour lie in the same plane (dimensions are markedin the picture). To determine the mutual inductance between the unrestricted conductor andthe triangular outline.
Chapter 28 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
Ch. 28 - Prob. 1PCh. 28 - Prob. 2PCh. 28 - Prob. 3PCh. 28 - Prob. 4PCh. 28 - Prob. 5PCh. 28 - Prob. 6PCh. 28 - Prob. 7PCh. 28 - Prob. 8PCh. 28 - Prob. 9PCh. 28 - Prob. 10P
Ch. 28 - Prob. 11PCh. 28 - Prob. 12PCh. 28 - Prob. 13PCh. 28 - Prob. 14PCh. 28 - Prob. 15PCh. 28 - Prob. 16PCh. 28 - Prob. 17PCh. 28 - Prob. 18PCh. 28 - Prob. 19PCh. 28 - Prob. 20PCh. 28 - Prob. 21PCh. 28 - Prob. 22PCh. 28 - Prob. 23PCh. 28 - Prob. 24PCh. 28 - Prob. 25PCh. 28 - Prob. 26PCh. 28 - Prob. 27PCh. 28 - Prob. 28PCh. 28 - Prob. 29PCh. 28 - Prob. 30PCh. 28 - Prob. 31PCh. 28 - Prob. 32PCh. 28 - Prob. 33PCh. 28 - Prob. 34PCh. 28 - Prob. 35PCh. 28 - Prob. 36PCh. 28 - Prob. 37PCh. 28 - Prob. 38PCh. 28 - Prob. 39PCh. 28 - Prob. 40PCh. 28 - Prob. 41PCh. 28 - Prob. 42PCh. 28 - Prob. 43PCh. 28 - Prob. 44PCh. 28 - Prob. 45PCh. 28 - Prob. 46PCh. 28 - Prob. 47PCh. 28 - Prob. 48PCh. 28 - Prob. 49PCh. 28 - Prob. 50PCh. 28 - Prob. 51PCh. 28 - Prob. 52PCh. 28 - Prob. 53PCh. 28 - Prob. 54PCh. 28 - Prob. 55PCh. 28 - Prob. 56PCh. 28 - Prob. 57PCh. 28 - Prob. 58PCh. 28 - Prob. 59PCh. 28 - Prob. 60PCh. 28 - Prob. 61PCh. 28 - Prob. 62PCh. 28 - Prob. 63PCh. 28 - Prob. 64PCh. 28 - Prob. 65PCh. 28 - Prob. 66PCh. 28 - Prob. 67PCh. 28 - Prob. 68PCh. 28 - Prob. 69PCh. 28 - Prob. 70PCh. 28 - Prob. 71PCh. 28 - Prob. 72PCh. 28 - Prob. 73PCh. 28 - Prob. 74PCh. 28 - Prob. 75PCh. 28 - Prob. 76PCh. 28 - Prob. 77PCh. 28 - Prob. 78PCh. 28 - Prob. 79PCh. 28 - Prob. 80PCh. 28 - Prob. 81PCh. 28 - Prob. 83P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Check Your Understanding (a) What is the magnetic flux through one turn of a solenoid of self- inductance 8.0 × 10-5 H when a current of 3.0 A flows through it? Assume that the solenoid has 1000 turns and is wound from wire of diameter 1.0 mm. (b) What is the cross-sectional area of the solenoid?arrow_forwardA steady current flows through a circuit with a large induct3ve time constant. When a switch in the circuit is opened, a large spark across the terminals of the switch. Explain.arrow_forwardDesign a current loop that, when rotated in a uniform magnetic field of strength 0.10 T, will produce an emf =0 sin t. where 0=110V and 0=110V .arrow_forward
- A 5000-pF capacitor is charged to 100 V and then quickly connected to an 80-mH inductor. Determine (a) the maximum energy stored in the magnetic field of the inductor, (b) the peak value of the current, and (c) the frequency of oscillation of the circuit.arrow_forwardWhat is the self-inductance per meter of a coaxial cable whose inner radius is 0.50 mm and whose outer radius is 4.00 mm?arrow_forwardConsider a coil of wire wrapped around an iron core. If the flux in the core is given by the equation o = 0.5sinwtWb and if there are 200 turns on the core, what voltage is produced at the terminals of the coil?arrow_forward
- A long coaxial cable (Fig.) consists of two concentric cylindrical conductors with radii a and b, where b>> a. Its central conductor carries a steady current i, and the outer conductor provides the return path, (a) Calculate the energy stored in the magnetic field for a length l of such a cable. (b) What is the inductance of a length l of the cable? You want to wind a coil so that it has resistance but essentially no inductance. How would you do it? Question No- 03 (8 Marks) A student makes an electromagnet by winding 320 turns of wire around aarrow_forwardPLS ANSWER WITHIN 10MINS For a toroidal solenoid, suppose the number of turns is 291, the area is 4.89 cm 2, and the radius is 8.43 cm. The current in the toroidal solenoid increases uniformly from 0 A to 1.37 A in 3.28 us. Find the magnitude of the self-induced emf. Final answer should be in two (2) decimal places. For the final answer, express the unit in symbols. For example: 5.00 Kelvin should be expressed as 5.00 Karrow_forwardA circuit consists of a battery with E=50.0 V, two resistors R1=30.0Q, R2=15.02, and an inductor L=0.3 H as shown in the figure. The switch S is closed at time t=0. (a) Find the potential difference V.-V, just after the switch is closed. (b) Find the currents i, and iz going through R, and R, and their directions, just after the switch is closed. (c) The switch is left closed a long time; find the currents i, and iz. (d) After the switch is left closed a long time, it is opened again. Find V.-V, and V.-Va just after the switch is opened.arrow_forward
- If 50.0 cm of copper wire (diameter = 1.00 mm) isformed into a circular loop and placed perpendicular to a uniformmagnetic field that is increasing at the constant rate of 10.0 mT/s, atwhat rate is thermal energy generated in the loop?arrow_forwardTwo solenoids A and B, spaced close to each other and sharing the same cylindrical axis, have 400 and 700 turns, respectively. A current of 3.50 A in solenoid A produces an average flux of 300 μWb through each turn of A anda flux of 90.0 μWb through each turn of B. (a) Calculate the mutual inductance of the two solenoids. (b) What is the inductance of A? (c) What emf is induced in B when the current in A changes at the rate of 0.500 A/s?arrow_forwardA long solenoid with 10 turns per centimeter is placed inside a copper ring such that both objects have the same central axis. The radius of the ring is 10.0 cm, and the radius of the solenoid is 5.0 cm. (a) What is the emf induced in the ring when the current I through the solenoid is 5.0 A and changing at a rate of 100 A/s? (b) What is the emf induced in the ring when I = 2.0 A and dI/dt = 100 A/s? (c) What is the electric field inside thering for these two cases? (d) Suppose the ring is moved so that its central axis and the central axis of the solenoid are still parallel but no longer coincide. (You should assume that the solenoid is still inside the ring.) Now what is the emf induced in the ring? (e) Can you calculate the electric field in the ring as you did in part (c)?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College