FUNDAMENTALS OF FLUID MECHANICS
8th Edition
ISBN: 9781119571490
Author: GERHART
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 2.8, Problem 76P
To determine
The amount of weight needed to hold the wall
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
-6-
8 من 8
Mechanical vibration
HW-prob-1
lecture 8 By: Lecturer Mohammed O. attea
The 8-lb body is released from rest a distance xo
to the right of the equilibrium position.
Determine the displacement x as a function of time t,
where t = 0 is the time of release.
c=2.5 lb-sec/ft
wwwww
k-3 lb/in.
8 lb
Prob. -2
Find the value of (c) if the system is critically
damping.
Prob-3
Find Meq and Ceq at point B, Drive eq. of
motion for the system below.
Ш
H
-7~
+
目
T T & T
тт
+
Q For the following plan of building foundation, Determine
immediate settlement at points (A) and (B) knowing that: E,-25MPa,
u=0.3, Depth of foundation (D) =1m, Depth of layer below base level
of foundation (H)=10m.
3m
2m
100kPa
A
2m
150kPa
5m
200kPa
B
W
PE
2
43
R² 80 + 10 + kr³ Ø8=0 +0
R²+J+ kr200
R² + J-) + k r² = 0
kr20
kr20
8+
W₁ =
= 0
R²+1)
R²+J+)
4
lec 8.pdf
Mechanical vibration
lecture 6
By: Lecturer Mohammed C. Attea
HW1 (Energy method)
Find equation of motion and natural frequency for the system shown in fig. by energy
method.
m. Jo
000
HW2// For the system Fig below find
1-F.B.D
2Eq.of motion
8 wn
4-0 (1)
-5-
m
Chapter 2 Solutions
FUNDAMENTALS OF FLUID MECHANICS
Ch. 2.3 - Prob. 1PCh. 2.3 - The deepest known spot in the oceans is the...Ch. 2.3 - A closed tank is partially filled with glycerin....Ch. 2.3 - A 3-m-diameter vertical cylindrical tank is filled...Ch. 2.3 - Blood pressure is usually given as a ratio of the...Ch. 2.3 - An unknown immiscible liquid seeps into the bottom...Ch. 2.3 - A 30-ft-high downspout of a house is clogged at...Ch. 2.3 - How high a column of SAE 30 oil would be required...Ch. 2.3 - Bathyscaphes are capable of submerging to great...Ch. 2.3 - The deepest known spot in the oceans is the...
Ch. 2.3 - A submarine submerges by admitting seawater (S =...Ch. 2.3 - Determine the pressure at the bottom of an open...Ch. 2.3 - In a certain liquid at rest, measurements of the...Ch. 2.3 - Because of elevation differences, the water...Ch. 2.3 - Under normal conditions the temperature of the...Ch. 2.3 - Often young children drink milk (ρ = 1030 kg/m3)...Ch. 2.3 - (See The Wide World of Fluids article titled...Ch. 2.4 - What would be the barometric pressure reading, in...Ch. 2.4 - Denver, Colorado, is called the “mile-high city”...Ch. 2.4 - Prob. 20PCh. 2.4 - Pikes Peak near Denver, Colorado, has an elevation...Ch. 2.4 - Equation 2.12 provides the relationship between...Ch. 2.4 - As shown in Fig. 2.6 for the U.S. standard...Ch. 2.4 - (See The Wide World of Fluids article titled...Ch. 2.5 - On a given day, a barometer at the base of the...Ch. 2.5 - Aneroid barometers can be used to measure changes...Ch. 2.5 - Bourdon gages (see Video V2.4 and Fig. 2.13) are...Ch. 2.5 - On the suction side of a pump, a Bourdon pressure...Ch. 2.5 - A Bourdon pressure gage attached to the outside of...Ch. 2.6 - Obtain a photograph/image of a situation in which...Ch. 2.6 - A U-tube manometer is used to check the pressure...Ch. 2.6 - A barometric pressure of 29.4 in. Hg corresponds...Ch. 2.6 - For an atmospheric pressure of 101 kPa (abs)...Ch. 2.6 - The closed tank of Fig. P.2.34 is filled with...Ch. 2.6 - A mercury manometer is connected to a large...Ch. 2.6 - The U-tube manometer shown in Fig. P2.36 has two...Ch. 2.6 - A U-tube manometer is connected to a closed tank...Ch. 2.6 - The container shown in Fig. P2.38 holds 60 °F...Ch. 2.6 - A closed cylindrical tank filled with water has a...Ch. 2.6 - Two pipes are connected by a manometer as shown in...Ch. 2.6 - Find the percentage difference in the readings of...Ch. 2.6 - A U-tube manometer is connected to a closed tank...Ch. 2.6 - For the inclined-tube manometer of Fig. P2.43, the...Ch. 2.6 - A flowrate measuring device is installed in a...Ch. 2.6 - The sensitivity Sen of the micromanometer shown in...Ch. 2.6 - The cylindrical tank with hemispherical ends shown...Ch. 2.6 - Determine the elevation difference. Δh, between...Ch. 2.6 - What is the specific gravity of the liquid in the...Ch. 2.6 - For the configuration shown in Fig. P2.49 what...Ch. 2.6 - The manometer shown in Fig. P2.50 has an air...Ch. 2.6 - The U-tube manometer shown in Fig. P2.51 has legs...Ch. 2.6 - Both ends of the U-tube mercury manometer of Fig....Ch. 2.6 - The inverted U-tube manometer of Fig. P2.53...Ch. 2.6 - An inverted U-tube manometer containing oil (SG =...Ch. 2.6 - The sensitivity Sen of the manometer shown in Fig....Ch. 2.6 - In Fig. P2.56 pipe A contains gasoline (SG = 0.7),...Ch. 2.6 - The mercury manometer of Fig. P2.57 indicates a...Ch. 2.6 - Consider the cistern manometer shown in Fig....Ch. 2.6 - Prob. 59PCh. 2.6 - Prob. 60PCh. 2.6 - Determine the new differential reading along the...Ch. 2.6 - Prob. 62PCh. 2.6 - Determine the ratio of areas, A1/A2, of the two...Ch. 2.6 - Prob. 64PCh. 2.6 - Prob. 65PCh. 2.6 - An inverted hollow cylinder is pushed into the...Ch. 2.8 - Obtain a photograph/image of a situation in which...Ch. 2.8 - The basic elements of a hydraulic press are shown...Ch. 2.8 - The hydraulic cylinder shown in Fig. P2.69, with a...Ch. 2.8 - A Bourdon gage (see Fig. 2.13 and Video V2.4) is...Ch. 2.8 - A bottle jack allows an average person to lift one...Ch. 2.8 - Suction is often used in manufacturing processes...Ch. 2.8 - A piston having a cross-sectional area of 0.07 m2...Ch. 2.8 - Prob. 74PCh. 2.8 - The container shown in Fig. P2.75 has square cross...Ch. 2.8 - Find the weight W needed to hold the wall shown in...Ch. 2.8 - Determine the magnitude and direction of the force...Ch. 2.8 - An automobile has just dropped into a river. The...Ch. 2.8 - Consider the gate shown in Fig. P2.79. The gate is...Ch. 2.8 - Will the gate in Problem 44 ever open?
Ch. 2.8 - A tank contains 6 in. of oil (S = 0.82) above 6...Ch. 2.8 - A structure is attached to the ocean floor as...Ch. 2.8 - Concrete is poured into the forms as shown in Fig....Ch. 2.8 - A long, vertical wall separates seawater from...Ch. 2.8 - Forms used to make a concrete basement wall are...Ch. 2.8 - While building a high, tapered concrete wall,...Ch. 2.8 - A homogeneous, 4-ft-wide, 8-ft-long rectangular...Ch. 2.8 - A gate having the shape shown in Fig. P2.88 is...Ch. 2.8 - A pump supplies water under pressure to a large...Ch. 2.8 - Prob. 90PCh. 2.8 - Prob. 91PCh. 2.8 - The dam shown in Fig. P2.92 is 200 ft long and is...Ch. 2.8 - Prob. 93PCh. 2.8 - Figure P2.94 is a representation of the Keswick...Ch. 2.8 - The Keswick dam in Problem 2.94 is made of...Ch. 2.8 - The Keswick dam in Problem 2.94 is made of...Ch. 2.8 - Prob. 97PCh. 2.8 - Prob. 98PCh. 2.8 - Find the magnitude and location of the net...Ch. 2.8 - Prob. 100PCh. 2.8 - Find the total vertical force on the cylinder...Ch. 2.8 - A 3-m-wide, 8-m-high rectangular gate is located...Ch. 2.8 - A gate having the cross section shown in Fig....Ch. 2.8 - The massless, 4-ft-wide gate shown in Fig. P2.104...Ch. 2.8 - A 200-lb homogeneous gate 10 ft wide and 5 ft long...Ch. 2.8 - An open tank has a vertical partition and on one...Ch. 2.8 - Prob. 107PCh. 2.8 - A 4-ft by 3-ft massless rectangular gate is used...Ch. 2.8 - A thin 4-ft-wide, right-angle gate with negligible...Ch. 2.8 - The closed vessel of Fig. P2.110 contains water...Ch. 2.8 - (See The Wide World of Fluids article titled “The...Ch. 2.10 - Obtain a photograph/image of a situation in which...Ch. 2.10 - Prob. 113PCh. 2.10 - Prob. 114PCh. 2.10 - Figure P2.115 shows a cross section of a submersed...Ch. 2.10 - The container shown in Fig. P2.116 has circular...Ch. 2.10 - The 18-ft-long lightweight gate of Fig. P2.117 is...Ch. 2.10 - The air pressure in the top of the 2-liter pop...Ch. 2.10 - In drilling for oil in the Gulf of Mexico, some...Ch. 2.10 -
Hoover Dam (see Video 2.5) is the highest...Ch. 2.10 - A plug in the bottom of a pressurized tank is...Ch. 2.10 -
The homogeneous gate shown in Fig. P2.122...Ch. 2.10 - The concrete (specific weight = 150 lb/ft3)...Ch. 2.10 - Prob. 124PCh. 2.10 - Find the magnitude, direction, and location of the...Ch. 2.10 - A 10-m-long log is stuck against a dam, as shown...Ch. 2.10 - Prob. 127PCh. 2.10 - Prob. 128PCh. 2.10 - Prob. 129PCh. 2.10 - Prob. 130PCh. 2.10 - Prob. 131PCh. 2.11 - Prob. 132PCh. 2.11 - An iceberg (specific gravity 0.917) floats in the...Ch. 2.11 - Prob. 134PCh. 2.11 - Prob. 135PCh. 2.11 - Prob. 136PCh. 2.11 - Prob. 137PCh. 2.11 - Prob. 138PCh. 2.11 - Estimate the minimum water depth needed to float a...Ch. 2.11 - Prob. 140PCh. 2.11 - Prob. 141PCh. 2.11 - Prob. 142PCh. 2.11 - Prob. 143PCh. 2.11 - A solid cylindrical pine (S = 0.50) spar buoy has...Ch. 2.11 - Prob. 145PCh. 2.11 - Prob. 146PCh. 2.11 - Prob. 147PCh. 2.11 - A submarine is modeled as a cylinder with a length...Ch. 2.12 - Prob. 149PCh. 2.12 - Prob. 150PCh. 2.12 - Prob. 151PCh. 2.12 - Prob. 152PCh. 2.12 - Prob. 153PCh. 2.12 - The cylinder in Fig. P2.154 accelerates to the...Ch. 2.12 - A closed cylindrical tank that is 8 ft in diameter...Ch. 2.12 - The cart shown in Fig. P2.156 measures 10.0 cm...Ch. 2.12 - The U-tube manometer in Fig. P2.157 is used to...Ch. 2.12 - Prob. 158PCh. 2.12 - An open 1-m-diameter tank contains water at a...Ch. 2.12 - Prob. 160PCh. 2.12 - Prob. 161PCh. 2.12 - Prob. 162PCh. 2.12 - Prob. 163P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The hose supplying the cylinder operating the bucket of a large excavator has fluid at 1000 psi flowing at 5 gpm. What is theavailable power in the line?arrow_forwardQ For the following plan of building foundation, Determine immediate settlement at points (A) and (B) knowing that: E,-25MPa, u=0.3, Depth of foundation (D) =1m, Depth of layer below base level of foundation (H)=10m. 3m 2m 100kPa A 2m 150kPa 5m 200kPa Barrow_forwardGiven the following data for crack rocker mechanism. If θ2 = 4π/3 and ω2 = 1 rad/s, Determine all possible values of ω4 and ω3 analytically. The lengths of links are a = 2, b = 8, c = 7 and d = 9 in cm.arrow_forward
- Q6] (20 Marks) Select the most suitable choice for the following statements: modo digi -1A 10 af5 1 -The copper-based alloy which is responded to age hardening is a) copper-nickel b) aluminum bronze c) copper - beryllium d) brass besincaluy 2- Highly elastic polymers may experience elongations to greater than.... b) 500% bromsia-P c) 1000%. d) 1200% 15m or -2 a)100% 3- The cooling rate of quenching the steel in saltwater will be ......the cooling rate of quenching ir c) faster than sold) none of them a) slower than 4- Adding of a) Cr b) the same as ...... Will lead to stabilize the b) Mo 10 austenite in steel. c) Nimble avolls 1d) Sized loloin nl 5- The adjacent linear chains of crosslinked polymers are joined one to another at various positic DIR... by.........bonds c) covalent noisqo gd) ionic lg 120M 6- For the ceramic with coordination number 6 the cation to anion radius ratio will be a) Van der Waals a) 0.155-0.225 a) linear b) hydrogen (b) 0.225-0.414 c) 0.414 0.732 ..polymers.…arrow_forwardExamine Notes: Attempt Six Questions Only. rever necessa , Q1] (20 Marks) Answer with true (T) or false (F), corrects the wrong phrases, and gives sho reasons for correct and corrected statements: 1- High chromium irons are basically grey cast irons alloyed with 12 to 30 % Cr. yous board-19qgo orT-1 2- The drawbacks of Al- Li alloys are their high young modulus and high density.&M 0) (0 3- Vulcanized rubbers are classified under thermoplastic polymers. 4- Diamond is a stable carbon polymorph at room temperature and atmospheric pressure. ( 5- The metallic ions of ceramic are called anions, and they are positively charged. yldgiH-S 69001(6arrow_forwardH.W 5.4 Calculate the load that will make point A move to the left by 6mm, E-228GPa. The diameters of the rods are as shown in fig. below. 2P- PA 50mm B 200mm 2P 0.9m 1.3marrow_forward
- d₁ = = Two solid cylindrical road AB and BC are welded together at B and loaded as shown. Knowing that 30mm (for AB) and d₂ 50mm (for BC), find the average normal stress in each road and the total deformation of road AB and BC. E=220GPa H.W 5.3 60kN A For the previous example calculate the value of force P so that the point A will not move, and what is the total length of road AB at that force? P◄ A 125kN 125kN 0.9m 125kN 125kN 0.9m B B 1.3m 1.3marrow_forwardClass: B Calculate the load that will make point A move to the left by 6mm, E-228GPa The cross sections of the rods are as shown in fig. below. 183 P- Solution 1.418mm 200mm 80mm 3P- 18.3 A 080mm B 200mm 3P- 0.9m إعدادات العرض 1.3m 4.061mmarrow_forwardH.W6 Determine the largest weight W that can be supported by two wires shown in Fig. P109. The stress in either wire is not to exceed 30 ksi. The cross- sectional areas of wires AB and AC are 0.4 in2 and 0.5 in2, respectively. 50° 30° Warrow_forward
- Find equation of motion and natural frequency for the system shown in fig. by energy method. H.W2// For the system Fig below find 1-F.B.D 2-Eq.of motion 8wn 4-0 (5) m. Jo marrow_forward2. Read the following Vernier caliper measurements. (The scales have been enlarged for easier reading.) The Vernier caliper is calibrated in metric units. (a) 0 1 2 3 4 5 سلسلسله (b) 1 2 3 4 5 6 سلسل (c) 1 23456 (d) 1 2 3 4 5 6 سلسلسarrow_forwardExplain why on the interval 0<x<1000 mm and 1000<x<2000mm, Mt is equal to positive 160 Nm, but at x= 0mm and x=1000mm Mt is equal to -160 Nm (negative value!). What is the reason for the sign change of Mt?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY