FUNDAMENTALS OF FLUID MECHANICS
8th Edition
ISBN: 9781119571490
Author: GERHART
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 2.8, Problem 89P
To determine
The force on the latch is independent of the supply pressure and the height of the tank.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Question 2
Figure 3 shows the numerical solution of the advection equation for a scalar u along x at three
consecutive timesteps.
1.0
0.8-
0.6-
0.4-
0.2-
0.0-
-0.2-
-0.4-
-0.6
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
Figure 3: Advection equation, solution for three different timesteps.
a) Provide an explanation what conditions and numerical setup could explain the curves. Identify
which of the three curves is the first, second and third timestep.
b) Consider explicit schemes with central and upwind discretisations. Explain how each of these
candidate discretisations could produce the behaviour shown in Figure 3.
c) Determine the CFL number that was used in the simulation for each of the candidate schemes for
all possible updates.
Assume that the timestep and mesh-width used are constant. Read the data to two digits of
accuracy from Figure 4 shown at the end of the question, which is an enlarged version of Figure 3.
Demonstrate your method and input data for one calculation, but then use a…
answer please
Provide an explanation what conditions and numerical setup could explain the curves. Identify which of the three curves is the first. second and third timestep.
Chapter 2 Solutions
FUNDAMENTALS OF FLUID MECHANICS
Ch. 2.3 - Prob. 1PCh. 2.3 - The deepest known spot in the oceans is the...Ch. 2.3 - A closed tank is partially filled with glycerin....Ch. 2.3 - A 3-m-diameter vertical cylindrical tank is filled...Ch. 2.3 - Blood pressure is usually given as a ratio of the...Ch. 2.3 - An unknown immiscible liquid seeps into the bottom...Ch. 2.3 - A 30-ft-high downspout of a house is clogged at...Ch. 2.3 - How high a column of SAE 30 oil would be required...Ch. 2.3 - Bathyscaphes are capable of submerging to great...Ch. 2.3 - The deepest known spot in the oceans is the...
Ch. 2.3 - A submarine submerges by admitting seawater (S =...Ch. 2.3 - Determine the pressure at the bottom of an open...Ch. 2.3 - In a certain liquid at rest, measurements of the...Ch. 2.3 - Because of elevation differences, the water...Ch. 2.3 - Under normal conditions the temperature of the...Ch. 2.3 - Often young children drink milk (ρ = 1030 kg/m3)...Ch. 2.3 - (See The Wide World of Fluids article titled...Ch. 2.4 - What would be the barometric pressure reading, in...Ch. 2.4 - Denver, Colorado, is called the “mile-high city”...Ch. 2.4 - Prob. 20PCh. 2.4 - Pikes Peak near Denver, Colorado, has an elevation...Ch. 2.4 - Equation 2.12 provides the relationship between...Ch. 2.4 - As shown in Fig. 2.6 for the U.S. standard...Ch. 2.4 - (See The Wide World of Fluids article titled...Ch. 2.5 - On a given day, a barometer at the base of the...Ch. 2.5 - Aneroid barometers can be used to measure changes...Ch. 2.5 - Bourdon gages (see Video V2.4 and Fig. 2.13) are...Ch. 2.5 - On the suction side of a pump, a Bourdon pressure...Ch. 2.5 - A Bourdon pressure gage attached to the outside of...Ch. 2.6 - Obtain a photograph/image of a situation in which...Ch. 2.6 - A U-tube manometer is used to check the pressure...Ch. 2.6 - A barometric pressure of 29.4 in. Hg corresponds...Ch. 2.6 - For an atmospheric pressure of 101 kPa (abs)...Ch. 2.6 - The closed tank of Fig. P.2.34 is filled with...Ch. 2.6 - A mercury manometer is connected to a large...Ch. 2.6 - The U-tube manometer shown in Fig. P2.36 has two...Ch. 2.6 - A U-tube manometer is connected to a closed tank...Ch. 2.6 - The container shown in Fig. P2.38 holds 60 °F...Ch. 2.6 - A closed cylindrical tank filled with water has a...Ch. 2.6 - Two pipes are connected by a manometer as shown in...Ch. 2.6 - Find the percentage difference in the readings of...Ch. 2.6 - A U-tube manometer is connected to a closed tank...Ch. 2.6 - For the inclined-tube manometer of Fig. P2.43, the...Ch. 2.6 - A flowrate measuring device is installed in a...Ch. 2.6 - The sensitivity Sen of the micromanometer shown in...Ch. 2.6 - The cylindrical tank with hemispherical ends shown...Ch. 2.6 - Determine the elevation difference. Δh, between...Ch. 2.6 - What is the specific gravity of the liquid in the...Ch. 2.6 - For the configuration shown in Fig. P2.49 what...Ch. 2.6 - The manometer shown in Fig. P2.50 has an air...Ch. 2.6 - The U-tube manometer shown in Fig. P2.51 has legs...Ch. 2.6 - Both ends of the U-tube mercury manometer of Fig....Ch. 2.6 - The inverted U-tube manometer of Fig. P2.53...Ch. 2.6 - An inverted U-tube manometer containing oil (SG =...Ch. 2.6 - The sensitivity Sen of the manometer shown in Fig....Ch. 2.6 - In Fig. P2.56 pipe A contains gasoline (SG = 0.7),...Ch. 2.6 - The mercury manometer of Fig. P2.57 indicates a...Ch. 2.6 - Consider the cistern manometer shown in Fig....Ch. 2.6 - Prob. 59PCh. 2.6 - Prob. 60PCh. 2.6 - Determine the new differential reading along the...Ch. 2.6 - Prob. 62PCh. 2.6 - Determine the ratio of areas, A1/A2, of the two...Ch. 2.6 - Prob. 64PCh. 2.6 - Prob. 65PCh. 2.6 - An inverted hollow cylinder is pushed into the...Ch. 2.8 - Obtain a photograph/image of a situation in which...Ch. 2.8 - The basic elements of a hydraulic press are shown...Ch. 2.8 - The hydraulic cylinder shown in Fig. P2.69, with a...Ch. 2.8 - A Bourdon gage (see Fig. 2.13 and Video V2.4) is...Ch. 2.8 - A bottle jack allows an average person to lift one...Ch. 2.8 - Suction is often used in manufacturing processes...Ch. 2.8 - A piston having a cross-sectional area of 0.07 m2...Ch. 2.8 - Prob. 74PCh. 2.8 - The container shown in Fig. P2.75 has square cross...Ch. 2.8 - Find the weight W needed to hold the wall shown in...Ch. 2.8 - Determine the magnitude and direction of the force...Ch. 2.8 - An automobile has just dropped into a river. The...Ch. 2.8 - Consider the gate shown in Fig. P2.79. The gate is...Ch. 2.8 - Will the gate in Problem 44 ever open?
Ch. 2.8 - A tank contains 6 in. of oil (S = 0.82) above 6...Ch. 2.8 - A structure is attached to the ocean floor as...Ch. 2.8 - Concrete is poured into the forms as shown in Fig....Ch. 2.8 - A long, vertical wall separates seawater from...Ch. 2.8 - Forms used to make a concrete basement wall are...Ch. 2.8 - While building a high, tapered concrete wall,...Ch. 2.8 - A homogeneous, 4-ft-wide, 8-ft-long rectangular...Ch. 2.8 - A gate having the shape shown in Fig. P2.88 is...Ch. 2.8 - A pump supplies water under pressure to a large...Ch. 2.8 - Prob. 90PCh. 2.8 - Prob. 91PCh. 2.8 - The dam shown in Fig. P2.92 is 200 ft long and is...Ch. 2.8 - Prob. 93PCh. 2.8 - Figure P2.94 is a representation of the Keswick...Ch. 2.8 - The Keswick dam in Problem 2.94 is made of...Ch. 2.8 - The Keswick dam in Problem 2.94 is made of...Ch. 2.8 - Prob. 97PCh. 2.8 - Prob. 98PCh. 2.8 - Find the magnitude and location of the net...Ch. 2.8 - Prob. 100PCh. 2.8 - Find the total vertical force on the cylinder...Ch. 2.8 - A 3-m-wide, 8-m-high rectangular gate is located...Ch. 2.8 - A gate having the cross section shown in Fig....Ch. 2.8 - The massless, 4-ft-wide gate shown in Fig. P2.104...Ch. 2.8 - A 200-lb homogeneous gate 10 ft wide and 5 ft long...Ch. 2.8 - An open tank has a vertical partition and on one...Ch. 2.8 - Prob. 107PCh. 2.8 - A 4-ft by 3-ft massless rectangular gate is used...Ch. 2.8 - A thin 4-ft-wide, right-angle gate with negligible...Ch. 2.8 - The closed vessel of Fig. P2.110 contains water...Ch. 2.8 - (See The Wide World of Fluids article titled “The...Ch. 2.10 - Obtain a photograph/image of a situation in which...Ch. 2.10 - Prob. 113PCh. 2.10 - Prob. 114PCh. 2.10 - Figure P2.115 shows a cross section of a submersed...Ch. 2.10 - The container shown in Fig. P2.116 has circular...Ch. 2.10 - The 18-ft-long lightweight gate of Fig. P2.117 is...Ch. 2.10 - The air pressure in the top of the 2-liter pop...Ch. 2.10 - In drilling for oil in the Gulf of Mexico, some...Ch. 2.10 -
Hoover Dam (see Video 2.5) is the highest...Ch. 2.10 - A plug in the bottom of a pressurized tank is...Ch. 2.10 -
The homogeneous gate shown in Fig. P2.122...Ch. 2.10 - The concrete (specific weight = 150 lb/ft3)...Ch. 2.10 - Prob. 124PCh. 2.10 - Find the magnitude, direction, and location of the...Ch. 2.10 - A 10-m-long log is stuck against a dam, as shown...Ch. 2.10 - Prob. 127PCh. 2.10 - Prob. 128PCh. 2.10 - Prob. 129PCh. 2.10 - Prob. 130PCh. 2.10 - Prob. 131PCh. 2.11 - Prob. 132PCh. 2.11 - An iceberg (specific gravity 0.917) floats in the...Ch. 2.11 - Prob. 134PCh. 2.11 - Prob. 135PCh. 2.11 - Prob. 136PCh. 2.11 - Prob. 137PCh. 2.11 - Prob. 138PCh. 2.11 - Estimate the minimum water depth needed to float a...Ch. 2.11 - Prob. 140PCh. 2.11 - Prob. 141PCh. 2.11 - Prob. 142PCh. 2.11 - Prob. 143PCh. 2.11 - A solid cylindrical pine (S = 0.50) spar buoy has...Ch. 2.11 - Prob. 145PCh. 2.11 - Prob. 146PCh. 2.11 - Prob. 147PCh. 2.11 - A submarine is modeled as a cylinder with a length...Ch. 2.12 - Prob. 149PCh. 2.12 - Prob. 150PCh. 2.12 - Prob. 151PCh. 2.12 - Prob. 152PCh. 2.12 - Prob. 153PCh. 2.12 - The cylinder in Fig. P2.154 accelerates to the...Ch. 2.12 - A closed cylindrical tank that is 8 ft in diameter...Ch. 2.12 - The cart shown in Fig. P2.156 measures 10.0 cm...Ch. 2.12 - The U-tube manometer in Fig. P2.157 is used to...Ch. 2.12 - Prob. 158PCh. 2.12 - An open 1-m-diameter tank contains water at a...Ch. 2.12 - Prob. 160PCh. 2.12 - Prob. 161PCh. 2.12 - Prob. 162PCh. 2.12 - Prob. 163P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- What are the accompanving boundary conditions for this bar?arrow_forward1.1 Consider the fireclay brick wall of Example 1.1 that is operating under different thermal conditions. The tem- perature distribution, at an instant in time, is T(x) = a+ bx where a 1400 K and b = -1000 K/m. Determine the heat fluxes, q", and heat rates, q, at x = 0 and x = L. Do steady-state conditions exist?arrow_forward2.4 To determine the effect of the temperature dependence of the thermal conductivity on the temperature dis- tribution in a solid, consider a material for which this dependence may be represented as k = k₁ + aT where k, is a positive constant and a is a coefficient that may be positive or negative. Sketch the steady-state temperature distribution associated with heat transfer in a plane wall for three cases corresponding to a > 0, a = 0, and a < 0.arrow_forward
- 1.21 A one-dimensional plane wall is exposed to convective and radiative conditions at x = 0. The ambient and sur- rounding temperatures are T = 20°C and Tur = 40°C, respectively. The convection heat transfer coefficient is h=20 W/m² K, and the absorptivity of the exposed sur- face is α=0.78. Determine the convective and radiative heat fluxes to the wall at x = 0 if the wall surface tem- perature is T, = 24°C. Assume the exposed wall surface is gray, and the surroundings are large.arrow_forward1.12 You've experienced convection cooling if you've ever extended your hand out the window of a moving vehi- cle or into a flowing water stream. With the surface of your hand at a temperature of 30°C, determine the con- vection heat flux for (a) a vehicle speed of 40 km/h in air at -8°C with a convection coefficient of 40 W/m² K and (b) a velocity of 0.2 m/s in a water stream at 10°C with a convection coefficient of 900 W/m²K. Which condition would feel colder? Contrast these results with a heat flux of approximately 30 W/m² under normal room conditions.arrow_forwardPLEASE SOLVE STEP BY STEP WITHOUT ARTIFICIAL INTELLIGENCE OR CHATGPT SOLVE BY HAND STEP BY STEParrow_forward
- 1. A 40 lb. force is applied at point E. There are pins at A, B, C, D, and F and a roller at A. a. Draw a FBD of member EFC showing all the known and unknown forces acting on it. b. Draw a FBD of member ABF showing all the known and unknown forces acting on it. c. Draw a FBD of member BCD showing all the known and unknown forces acting on it. d. Draw a FBD of the entire assembly ADE showing all the known and unknown forces acting on it. e. Determine the reactions at A and D. f. Determine the magnitude of the pin reaction at C. 40 lbs. B A 6 in. 4 in. D F -5 in.4 in 4.arrow_forwardA crude oil of specific gravity0.85 flows upward at a volumetric rate of flow of 70litres per second through a vertical venturimeter,with an inlet diameter of 250 mm and a throat diameter of 150mm. The coefficient of discharge of venturimeter is 0.96. The vertical differences betwecen the pressure toppings is 350mm. i) Draw a well labeled diagram to represent the above in formation i) If the two pressure gauges are connected at the tapings such that they are positioned at the levels of their corresponding tapping points, determine the difference of readings in N/CM² of the two pressure gauges ii) If a mercury differential manometer is connected in place of pressure gauges, to the tappings such that the connecting tube up to mercury are filled with oil determine the difference in the level of mercury column.arrow_forwardCan you solve it analytically using laplace transforms and with Matlab code as well please. Thank Youarrow_forward
- Can you solve it analytically using laplace transforms and with Matlab code as well please. Thank You.arrow_forwardQ11. Determine the magnitude of the reaction force at C. 1.5 m a) 4 KN D b) 6.5 kN c) 8 kN d) e) 11.3 KN 20 kN -1.5 m- C 4 kN -1.5 m B Mechanical engineering, No Chatgpt.arrow_forwardplease help with this practice problem(not a graded assignment, this is a practice exam), and please explain how to use sohcahtoaarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY