Consider a 2.4-kW hooded electric open burner in an area where the unit costs of electricity and natural gas are $0.10/kWh and $1.20/therm (1 therm = 105,500 kJ), respectively. The efficiency of open burners can be taken to be 73 percent for electric burners and 38 percent for gas burners. Determine the rate of energy consumption and the unit cost of utilized energy for both electric and gas burners.
Consider a 2.4-kW hooded electric open burner in an area where the unit costs of electricity and natural gas are $0.10/kWh and $1.20/therm (1 therm = 105,500 kJ), respectively. The efficiency of open burners can be taken to be 73 percent for electric burners and 38 percent for gas burners. Determine the rate of energy consumption and the unit cost of utilized energy for both electric and gas burners.
Solution Summary: The author explains the rate of energy consumption and the unit cost of utilized energy of electric burner.
Consider a 2.4-kW hooded electric open burner in an area where the unit costs of electricity and natural gas are $0.10/kWh and $1.20/therm (1 therm = 105,500 kJ), respectively. The efficiency of open burners can be taken to be 73 percent for electric burners and 38 percent for gas burners. Determine the rate of energy consumption and the unit cost of utilized energy for both electric and gas burners.
Q
Derive (continuity equation)?
I want to derive clear mathematics.
motor supplies 200 kW at 6 Hz to flange A of the shaft shown in Figure. Gear B transfers 125 W of power to operating machinery in the factory, and the remaining power in the shaft is mansferred by gear D. Shafts (1) and (2) are solid aluminum (G = 28 GPa) shafts that have the same diameter and an allowable shear stress of t= 40 MPa. Shaft (3) is a solid steel (G = 80 GPa) shaft with an allowable shear stress of t = 55 MPa. Determine:
a) the minimum permissible diameter for aluminum shafts (1) and (2)
b) the minimum permissible diameter for steel shaft (3).
c) the rotation angle of gear D with respect to flange A if the shafts have the minimum permissible diameters as determined in (a) and (b).
First monthly exam
Gas dynamics
Third stage
Q1/Water at 15° C flow through a 300 mm diameter riveted steel pipe, E-3 mm with a head loss of 6 m in
300 m length. Determine the flow rate in pipe. Use moody chart.
Q2/ Assume a car's exhaust system can be approximated as 14 ft long and 0.125 ft-diameter cast-iron pipe (
= 0.00085 ft) with the equivalent of (6) regular 90° flanged elbows (KL = 0.3) and a muffler. The
muffler acts as a resistor with a loss coefficient of KL= 8.5. Determine the pressure at the beginning of the
exhaust system (pl) if the flowrate is 0.10 cfs, and the exhaust has the same properties as air.(p = 1.74 ×
10-3 slug/ft³, u= 4.7 x 10-7 lb.s/ft²) Use moody chart
(1)
MIDAS
Kel=0.3
Q3/Liquid ammonia at -20°C is flowing through a 30 m long section of a 5 mm diameter copper tube(e =
1.5 × 10-6 m) at a rate of 0.15 kg/s. Determine the pressure drop and the head losses.
.μ= 2.36 × 10-4 kg/m.s)p = 665.1 kg/m³
Java How to Program, Early Objects (11th Edition) (Deitel: How to Program)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.