CONNECT FOR THERMODYNAMICS: AN ENGINEERI
9th Edition
ISBN: 9781260048636
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2.8, Problem 51P
To determine
How much money will be saved per year by switching to low-rolling-resistance tires?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A car traversing along Taft Avenue consumes 12 liters of gasoline per 100 kilometers. What amount of carbon dioxide is produced by the car?
4. The discussion of electricity costs in section 8.6 stated that coal costs of $1.00 - $1.50 per million BTU are
equivalent to about $24-$36 per ton, and that natural gas costs of $2.00 - $5.00 per million BTU correspond,
on an equivalent energy basis, to $12-$30 per barrel of oil. Use the data on fuel properties in table 8.1 to
confirm these equivalencies.
King Orquinaza bought a diesel electric plant in a remote part of Ilo-Ilo province that utilizes diesel fuel with an API of 28 at 15.6 deg C. The plant consumes 680 liters of diesel fuel at 26.6 deg C in 24 hours whie the power generated for the same period amounts to 1980 KW-hrs. Determine the density of the fuel at 26.6 deg C in kg/liters.
Chapter 2 Solutions
CONNECT FOR THERMODYNAMICS: AN ENGINEERI
Ch. 2.8 - What is the difference between the macroscopic and...Ch. 2.8 - What is total energy? Identify the different forms...Ch. 2.8 - List the forms of energy that contribute to the...Ch. 2.8 - How are heat, internal energy, and thermal energy...Ch. 2.8 - What is mechanical energy? How does it differ from...Ch. 2.8 - Portable electric heaters are commonly used to...Ch. 2.8 - Natural gas, which is mostly methane CH4, is a...Ch. 2.8 - Consider the falling of a rock off a cliff into...Ch. 2.8 - Electric power is to be generated by installing a...Ch. 2.8 - The specific kinetic energy of a moving mass is...
Ch. 2.8 - Determine the specific kinetic energy of a mass...Ch. 2.8 - Calculate the total potential energy, in Btu, of...Ch. 2.8 - Determine the specific potential energy, in kJ/kg,...Ch. 2.8 - An object whose mass is 100 kg is located 20 m...Ch. 2.8 - A water jet that leaves a nozzle at 60 m/s at a...Ch. 2.8 - Consider a river flowing toward a lake at an...Ch. 2.8 - At a certain location, wind is blowing steadily at...Ch. 2.8 - What is the caloric theory? When and why was it...Ch. 2.8 - In what forms can energy cross the boundaries of a...Ch. 2.8 - What is an adiabatic process? What is an adiabatic...Ch. 2.8 - When is the energy crossing the boundaries of a...Ch. 2.8 - Consider an automobile traveling at a constant...Ch. 2.8 - A room is heated by an iron that is left plugged...Ch. 2.8 - A room is heated as a result of solar radiation...Ch. 2.8 - A gas in a pistoncylinder device is compressed,...Ch. 2.8 - A small electrical motor produces 5 W of...Ch. 2.8 - A car is accelerated from rest to 85 km/h in 10 s....Ch. 2.8 - A construction crane lifts a prestressed concrete...Ch. 2.8 - Determine the torque applied to the shaft of a car...Ch. 2.8 - A spring whose spring constant is 200 lbf/in has...Ch. 2.8 - How much work, in kJ, can a spring whose spring...Ch. 2.8 - A ski lift has a one-way length of 1 km and a...Ch. 2.8 - The engine of a 1500-kg automobile has a power...Ch. 2.8 - A damaged 1200-kg car is being towed by a truck....Ch. 2.8 - As a spherical ammonia vapor bubble rises in...Ch. 2.8 - A steel rod of 0.5 cm diameter and 10 m length is...Ch. 2.8 - What are the different mechanisms for transferring...Ch. 2.8 - For a cycle, is the net work necessarily zero? For...Ch. 2.8 - On a hot summer day, a student turns his fan on...Ch. 2.8 - Water is being heated in a closed pan on top of a...Ch. 2.8 - An adiabatic closed system is accelerated from 0...Ch. 2.8 - A fan is to accelerate quiescent air to a velocity...Ch. 2.8 - A vertical pistoncylinder device contains water...Ch. 2.8 - At winter design conditions, a house is projected...Ch. 2.8 - A water pump increases the water pressure from 15...Ch. 2.8 - The lighting needs of a storage room are being met...Ch. 2.8 - A university campus has 200 classrooms and 400...Ch. 2.8 - Consider a room that is initially at the outdoor...Ch. 2.8 - An escalator in a shopping center is designed to...Ch. 2.8 - Consider a 2100-kg car cruising at constant speed...Ch. 2.8 - Prob. 51PCh. 2.8 - What is mechanical efficiency? What does a...Ch. 2.8 - How is the combined pumpmotor efficiency of a pump...Ch. 2.8 - Can the combined turbinegenerator efficiency be...Ch. 2.8 - Consider a 2.4-kW hooded electric open burner in...Ch. 2.8 - The steam requirements of a manufacturing facility...Ch. 2.8 - Reconsider Prob. 256E. Using appropriate software,...Ch. 2.8 - A 75-hp (shaft output) motor that has an...Ch. 2.8 - Prob. 59PCh. 2.8 - An exercise room has six weight-lifting machines...Ch. 2.8 - A room is cooled by circulating chilled water...Ch. 2.8 - The water in a large lake is to be used to...Ch. 2.8 - A 7-hp (shaft) pump is used to raise water to an...Ch. 2.8 - A geothermal pump is used to pump brine whose...Ch. 2.8 - At a certain location, wind is blowing steadily at...Ch. 2.8 - Reconsider Prob. 265. Using appropriate software,...Ch. 2.8 - Water is pumped from a lower reservoir to a higher...Ch. 2.8 - An 80-percent-efficient pump with a power input of...Ch. 2.8 - Water is pumped from a lake to a storage tank 15 m...Ch. 2.8 - Large wind turbines with a power capacity of 8 MW...Ch. 2.8 - A hydraulic turbine has 85 m of elevation...Ch. 2.8 - The water behind Hoover Dam in Nevada is 206 m...Ch. 2.8 - An oil pump is drawing 44 kW of electric power...Ch. 2.8 - A wind turbine is rotating at 15 rpm under steady...Ch. 2.8 - How does energy conversion affect the environment?...Ch. 2.8 - What is acid rain? Why is it called a rain? How do...Ch. 2.8 - Why is carbon monoxide a dangerous air pollutant?...Ch. 2.8 - What is the greenhouse effect? How does the excess...Ch. 2.8 - What is smog? What does it consist of? How does...Ch. 2.8 - Consider a household that uses 14,000 kWh of...Ch. 2.8 - When a hydrocarbon fuel is burned, almost all of...Ch. 2.8 - Prob. 82PCh. 2.8 - A typical car driven 20,000 km a year emits to the...Ch. 2.8 - Prob. 84PCh. 2.8 - What are the mechanisms of heat transfer?Ch. 2.8 - Which is a better heat conductor, diamond or...Ch. 2.8 - How does forced convection differ from natural...Ch. 2.8 - What is a blackbody? How do real bodies differ...Ch. 2.8 - Define emissivity and absorptivity. What is...Ch. 2.8 - Does any of the energy of the sun reach the earth...Ch. 2.8 - The inner and outer surfaces of a 5-m 6-m brick...Ch. 2.8 - The inner and outer surfaces of a 0.5-cm-thick 2-m...Ch. 2.8 - Reconsider Prob. 292. Using appropriate software,...Ch. 2.8 - Prob. 94PCh. 2.8 - Prob. 95PCh. 2.8 - Prob. 96PCh. 2.8 - Prob. 97PCh. 2.8 - For heat transfer purposes, a standing man can be...Ch. 2.8 - Prob. 99PCh. 2.8 - Prob. 100PCh. 2.8 - A 1000-W iron is left on the ironing board with...Ch. 2.8 - A 7-cm-external-diameter, 18-m-long hot-water pipe...Ch. 2.8 - A thin metal plate is insulated on the back and...Ch. 2.8 - Reconsider Prob. 2103. Using appropriate software,...Ch. 2.8 - The outer surface of a spacecraft in space has an...Ch. 2.8 - Prob. 106PCh. 2.8 - A hollow spherical iron container whose outer...Ch. 2.8 - Some engineers have developed a device that...Ch. 2.8 - Consider a classroom for 55 students and one...Ch. 2.8 - Consider a homeowner who is replacing his...Ch. 2.8 - Prob. 111RPCh. 2.8 - The U.S. Department of Energy estimates that...Ch. 2.8 - A typical household pays about 1200 a year on...Ch. 2.8 - Prob. 114RPCh. 2.8 - Prob. 115RPCh. 2.8 - Prob. 116RPCh. 2.8 - Consider a TV set that consumes 120 W of electric...Ch. 2.8 - Water is pumped from a 200-ft-deep well into a...Ch. 2.8 - Consider a vertical elevator whose cabin has a...Ch. 2.8 - Prob. 120RPCh. 2.8 - In a hydroelectric power plant, 65 m3/s of water...Ch. 2.8 - The demand for electric power is usually much...Ch. 2.8 - The pump of a water distribution system is powered...Ch. 2.8 - Prob. 124RPCh. 2.8 - A 2-kW electric resistance heater in a room is...Ch. 2.8 - Prob. 126FEPCh. 2.8 - A 75-hp compressor in a facility that operates at...Ch. 2.8 - On a hot summer day, the air in a well-sealed room...Ch. 2.8 - A fan is to accelerate quiescent air to a velocity...Ch. 2.8 - A 900-kg car cruising at a constant speed of 60...Ch. 2.8 - Prob. 131FEPCh. 2.8 - Prob. 132FEPCh. 2.8 - A 2-kW pump is used to pump kerosene ( = 0.820...Ch. 2.8 - Prob. 134FEPCh. 2.8 - Prob. 135FEPCh. 2.8 - Prob. 136FEPCh. 2.8 - Prob. 137FEPCh. 2.8 - Heat is transferred steadily through a...Ch. 2.8 - The roof of an electrically heated house is 7 m...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The fleet average fuel economy of one car-maker fails to meet the present CAFE target (27.5 mpg) by 3 mpg. As we know, this will incur a penalty of $ 165 per car. Assuming that the first owner of a typical car bought from this car-maker drives it for 100,000 miles before selling it. If the carbon footprint of gasoline is 2.9 kg/litre and 1 US gallon = 3.79 litre how much extra carbon does the car emit? 5264 kg 4894 kg 2536 kg 3625 kgarrow_forwardThe Preliminary audit taken by an energy manager indicates that the daily energy consumption per hours (with 8 hours / day shift) is distributes as follows: Fuel 1: 500 Kgs, Fuel 2: 900 Kgs, Fuel 3: 820 Kg with calorific value as fuel 1: 30000Kj/kg, Fuel 2: 42000 Kj.Kg, Fuel 3: 50000 kj/Kg. The Cost of the fuel as fuel 1: Rs 30/Kg, Fuel 2: Rs. 90/ Kg, Fuel 3: Rs 50/Kg. The Production Out put is 150000 units. Clearly showing the intermediate computation, answer the following (a) What is the energy Index? (b) what is the cost Index? ( c ) Represent the energy and cost distribution on pi - diagrams and Present your interference based on the above.arrow_forwardA car weighs 2200 lb and is travelling 100 mi/h on a race track that is on a 3% upgrade. The car is preparing to pass a slower car and its torque/engine speed curve is given by (with Me in ft-lb and ne in revolutions per second): Me = 8ne -0.05ne²; Drivetrain efficiency is 95%, drive axle slippage is 3%, wheel radius is 15 inches, frontal area is 22 ft², drag coefficient is 0.35, air density is 0.0022 slugs/ft³, and engine speed is 4800 rev/min. If the car is in a gear that produces maximum torque, what would the car's maximum acceleration be?arrow_forward
- In the United States, energy for household heating is generally sold using English units, e.g., therm, gal, and cord. A house in Wisconsin uses 1200 therms of thermal energy during the heating season. Calculate the cost of fuel if the furnace uses (a) natural gas with an efficiency of 70%; (b) No. 2 fuel oil, efficiency 65%; (c) kerosene, efficiency 99.9% (unvented); and (d) wood with l5% moisture with an efficiency of 50%. Use the data in Tables 2.2, 2.7, and 2.13. The efficiencies are based on the HHV. Assume the cost of natural gas is $8/MBtu, the cost of No. 2 fuel oil is $3/gal, the cost of kerosene is $3.50/gal, and the cost of wood is $100/cord. Assume the bulk density of cord wood is 30 lbm/ft3 .arrow_forwardA gasoline engine uses 0.01 kg/s of fuel while delivering 55 kW of power. The heating value of the fuel is 35,000 kJ/kg and the fuel density is 900 kg/m^3. In the question that follows, select the answer that is closest to the true value. What is the thermal efficiency of the engine?arrow_forwardThe resistance to motion is given by R, = (0.011 + 0.000 06 V) Mg + 0.028 AV² %3D where M is the mass in kg, V is the velocity in km/h and A is the frontal area in m². A jeep of 1400 kg mass and 2.4-m² frontal area is used to pull a trailor with a gross mass of 800 kg at 50 km/h in top gear on level road. If the jeep is capable of developing 40 kW of power for propulsion, find whether it is adequate for the job. The transmission efficiency may be taken as 92%. Also, find the pull on the coupling at this speed. If all the power is used by the loading trailor, determine the pull in the coupling at 50 km/h and the load put on the trailor.arrow_forward
- Based on thermodynamics of a process, explain intermediary energy. Mention the three characteristic features of this intermediary energyarrow_forwardAn object whose mass is 100 lb falls freely under the influence of gravity from an initial elevation of 600 ft above the surface of Earth. The initial velocity is downward with a magnitude of 50 ft/s. The effect of air resistance is negligible. Determine the velocity, in ft/s, of the object just before it strikes Earth. Assume g = 31.5 ft/s2arrow_forwardA canister of sevoflurane, an inhaled anesthetic, is warmed to room temperature over the course of 30 minutes. As the gas warms, it pushes on a movable piston with a force of 623 mN, increasing the volume of the gas by 16 cm^3. How much work was done by the gas? A. 0.03 CJ B. 0.27 CJ C. 2.7 CJ D. 270 CJarrow_forward
- From an engineering point of view, why should vehicles slow down and observe the speed limit for a road as they travel long distances?arrow_forwardCalculate the total potential energy, in kJ, of an object with a mass of 208.72 lbm when it is 9.76 ft above a datum level at a location where standard gravitational acceleration exists.arrow_forwardA vessel with a tonnage of 4000 t and an empty KG = 3.0 m, KM = 5.3 m is loaded with 6000 t of cargo (KG = 5 m). To calculate how many tons of cargo the ship could still accept if loaded on deck, where KG = 10 m and the minimum positive value for GM would be 0.3 m.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
8.01x - Lect 27 - Fluid Mechanics, Hydrostatics, Pascal's Principle, Atmosph. Pressure; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=O_HQklhIlwQ;License: Standard YouTube License, CC-BY
Dynamics of Fluid Flow - Introduction; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=djx9jlkYAt4;License: Standard Youtube License