Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 28, Problem 15P
To determine
The total number of revolutions of proton.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
You are working as a medical assistant at a proton beam facility, where high-speed protons are used to bombard cancer cells. The protons are accelerated with a cyclotron, which you find very interesting because of your background in physics. You are explaining this to a patient who has some familiarity with cyclotrons. She asks, “How many revolutions does a proton make in the cyclotron before it reaches its exit kinetic energy?” You are taken aback, both by the high quality of her question and the fact that you never thought of such a question before. You tell her you will try to get her an answer before she finishes her treatment today. When you are finished preparing her for treatment, you go into the cyclotron room and look at the machine. Only three numbers are available on the machine labeling: the exit energy K = 250 MeV, the radius at which the protons exit, r = 0.850 m, and the accelerating potential difference between the dees, ΔV = 800 V. You go back to the patient prepared…
A beam of a particles (helium nuclei) is used to treat a tumor located 11.1 cm inside a patient. To penetrate to the tumor, the a particles
must be accelerated to a speed of 0.558c, where c is the speed of light. (Ignore relativistic effects.) The mass of an a particle is 4.003
u and its charge is +2e. The cyclotron used to accelerate the beam has radius 1.50 m. What is the magnitude of the magnetic field?
The mass of a proton is 1.6605×10-27 kg/u.
The Tevatron accelerator at Fermilab (Illinois) is designed
to carry an 11-mA beam of protons (q = 1.6 × 10-19 C)
traveling at very nearly the speed of light (3.0 × 10$ m/s)
around a ring 6300 m in circumference. How many protons
are in the beam?
Chapter 28 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 28.1 - An electron moves in the plane of this paper...Ch. 28.2 - Prob. 28.2QQCh. 28.4 - A wire carries current in the plane of this paper...Ch. 28.5 - (i) Rank the magnitudes of the torques acting on...Ch. 28 - At the equator, near the surface of the Earth, the...Ch. 28 - Consider an electron near the Earths equator. In...Ch. 28 - Find the direction of the magnetic field acting on...Ch. 28 - A proton moving at 4.00 106 m/s through a...Ch. 28 - A proton travels with a speed of 5.02 106 m/s in...Ch. 28 - Prob. 6P
Ch. 28 - Prob. 7PCh. 28 - An accelerating voltage of 2.50103 V is applied to...Ch. 28 - A proton (charge + e, mass mp), a deuteron (charge...Ch. 28 - Prob. 10PCh. 28 - Review. One electron collides elastically with a...Ch. 28 - Review. One electron collides elastically with a...Ch. 28 - Review. An electron moves in a circular path...Ch. 28 - A cyclotron designed to accelerate protons has a...Ch. 28 - Prob. 15PCh. 28 - Prob. 16PCh. 28 - A cyclotron (Fig. 28.16) designed to accelerate...Ch. 28 - A particle in the cyclotron shown in Figure 28.16a...Ch. 28 - Prob. 19PCh. 28 - Prob. 20PCh. 28 - A wire carries a steady current of 2.40 A. A...Ch. 28 - Prob. 22PCh. 28 - Review. A rod of mass 0.720 kg and radius 6.00 cm...Ch. 28 - Review. A rod of mass m and radius R rests on two...Ch. 28 - Prob. 25PCh. 28 - Consider the system pictured in Figure P28.26. A...Ch. 28 - A strong magnet is placed under a horizontal...Ch. 28 - In Figure P28.28, the cube is 40.0 cm on each...Ch. 28 - Prob. 29PCh. 28 - A 50.0-turn circular coil of radius 5.00 cm can be...Ch. 28 - You are in charge of planning a physics magic show...Ch. 28 - Prob. 32PCh. 28 - A rectangular coil consists of N = 100 closely...Ch. 28 - A rectangular loop of wire has dimensions 0.500 m...Ch. 28 - Prob. 35PCh. 28 - A Hall-effect probe operates with a 120-mA...Ch. 28 - Prob. 37APCh. 28 - Prob. 38APCh. 28 - Prob. 39APCh. 28 - Prob. 40APCh. 28 - Prob. 41APCh. 28 - Prob. 42APCh. 28 - A proton having an initial velocity of 20.0iMm/s...Ch. 28 - Prob. 44APCh. 28 - Prob. 45APCh. 28 - Why is the following situation impossible? Figure...Ch. 28 - A heart surgeon monitors the flow rate of blood...Ch. 28 - Prob. 48APCh. 28 - Prob. 49CPCh. 28 - Protons having a kinetic energy of 5.00 MeV (1 eV...Ch. 28 - Review. A wire having a linear mass density of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The magnetic field in a cyclotron is 1.25 T, and the maximum orbital radius of the circulating protons is 0.40 m. (a) What is the kinetic energy of the protons when they are ejected from the cyclotron? (b) What Is this energy in MeV? (c) Through what potential difference would a proton have to be accelerated to acquire this kinetic energy? (d) What is the period of tire voltage source used to accelerate the piotons? (e) Repeat tire calculations for alpha-particles.arrow_forwardA proton circulates in a cyclotron, beginning approximately at rest at the center. The electric potential difference between the dees is 400V. What is the proton's kinetic energy after completing 100 passes through the gap?arrow_forward1m A charged particle with mass 2.974 x 10-30 Kg and a kinetic energy of 4 x 10-12 j are moving in the positive z direction and enter a magnetic field B = 1kT directed out of the plane of the page and extending from a = 0 to æ = 1.00m as shown in Figure. The charged particle follows the circular path as shown in the drawing with radius 4m. Ignore all relativistic effects. a). Calculate the charge with its sign d) What is the angular speed of the particle?arrow_forward
- Dizzy Particles. An electron of mass m and charge -e moves at a constant speed v along a circular path of radius r in a region of magnetic field B. In the same region, particle X with mass M moves at a constant speed 3v along a circular path with radius 2r. The direction of revolution of the particles is indicated in the figure. What is magnitude and sign of the charge of particle X? B 2r Electron Particle X 4 OA. +Me OB. -Me е O C. -3M OD. +Me 2arrow_forwardAt a particular instant, a proton, far from all other objects, is located at the origin. The proton is traveling with velocity (-5 × 107, 0, 0) m/s. Consider the electric and magnetic fields at observation point (5 × 10−7,3 × 10−7,0) m caused by this proton. (Use k = 8.988E9 and charge of proton = 1.6E-19) A. What is the E field at the observation point? (3627 2176 B. What is the B field at the observation point? (0 ⠀ 0 " # " 0 -1E-6 ) N # )Tarrow_forwardA proton (with charge of 1.6 x 10^-19 C and mass of 1.7*10^-27 kg) traveling at a speed of 53,045,750 m/s in the + x-direction enters a region of space where there is a magnetic field of strength 0.6 T in the - z-direction. What would be the radius of the circular motion that the proton would go into if it is "trapped" in this magnetic field region?arrow_forward
- A particle with a charge -1.24X10^-8 C is moving with instantaneous velocity v=(4.19x10^4 m/s)i + (-3.85 x10^4m/s)j. What is the force (magnitude and direction) exerted on this particle by a magnetic field (1.40T)k?arrow_forwardAuroras e are produced when charged particles from the sun (a.k.a. solar wind 2 ) directed toward the Earth are deflected toward the poles. At the poles, the magnetic field is stronger, so it tightens the radius of curvature of the particle's trajectory such that it ionizes the air. Suppose an alpha particle (mass of 6.64 x 10-27 kg, charge of +2e) with a kinetic energy of 5.2 kev becomes trapped by the Earth's magnetic field. Determine the radius of curvature of the particle's trajectory where the Earth's magnetic field is 37 µT and the velocity of the particle makes a 74° with the magnetic field. Give your answer in units of m.arrow_forwardA medical cyclotron used in the production of medical isotopes accelerates protons to 6.5 MeV. The magnetic field in the cyclotron is 1.5 T. A proton exits the cyclotron 1.0 ms after starting its spiral trajectory in the center of the cyclotron. How many orbits does the proton complete during this 1.0 ms?arrow_forward
- An positron (electron with a positive charge) starts at rest and accelerates through an electric field established by a set of parallel plates with a potential difference of 35 V. (e = 1.6 × 10-19 C, melectron = 9.1 × 10-31 kg) Instead of hitting the negative plate, the positron, travelling East, escapes the parallel plates through a small hole and enters a magnetic field of 0.75 T directed downward. What will be the magnetic force (magnitude and direction) on the charge?arrow_forwardA particle of charge q and mass m moves in the uniform fields E⃗ =E0k^ and B⃗ =B0k^. At t = 0, the particle has velocity v⃗ 0=v0i^. What is the particle's speed at a later time t?arrow_forwardA proton circulates in a cyclotron, beginning approximatelyat rest at the center.Whenever it passes through the gap betweendees, the electric potential difference between the dees is 200 V.(a) By how much does its kinetic energy increase with each passagethrough the gap? (b) What is its kinetic energy as it completes100 passes through the gap? Let r100 be the radius of the proton’scircular path as it completes those 100 passes and enters a dee,and let r101 be its next radius, as it enters a dee the next time. (c) Bywhat percentage does the radius increase when it changes fromr100 to r101? That is, what is percentage increase r101 - r100/r100 100%?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning