THERMODYNAMICS: ENG APPROACH LOOSELEAF
9th Edition
ISBN: 9781266084584
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2.8, Problem 123RP
The pump of a water distribution system is powered by a 15-kW electric motor whose efficiency is 90 percent. The water flow rate through the pump is 50 L/s. The diameters of the inlet and outlet pipes are the same, and the elevation difference across the pump is negligible. If the pressures at the inlet and outlet of the pump are measured to be 100 kPa and 300 kPa (absolute), respectively, determine the
FIGURE P2–123
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The pump of a water distribution system is powered by a 15-kW electric motor whose efficiency is 90 percent. The water flow rate through the pump is 50 L/s. The diameters of the inlet and outlet pipes are the same, and the elevation difference across the pump is negligible. If the pressures at the inlet and outlet of the pump are measured to be 100 kPa and 300 kPa (absolute), respectively, determine the mechanical efficiency of the pump.
A water pump delivers 6 hp of shaft power when operating. If the pressure differential between the outlet and the inlet of the pump is measured to be 1.2 psi when the flow rate is 15 ft^3/s the changes in velocity and elevation are negligible, determine the mechanical efficiency of this pump. Show the energy diagram and label it accordingly
2. An air-conditioning system requires air flow at the main supply duct at a rate of 180 m³/min. The average velocity of
air in the circular duct is not to exceed 10 m/s to avoid excessive vibration and pressure drops. Assuming the fan
converts 70 percent of the electrical energy it consumes into kinetic energy of air, determine the size of the electric
motor needed to drive the fan and the diameter of the main duct. Take the density of air to be 1.20 kg/m3.
Note that Air Power of the fan is give by: AP = Qy Ah
Where: Q = volume flow rate of air m3/s, y = specific weight of air, kN/m³, Ah = pressure head, m
Ans: 618 mm
180 m/min
10 m/s
Chapter 2 Solutions
THERMODYNAMICS: ENG APPROACH LOOSELEAF
Ch. 2.8 - What is the difference between the macroscopic and...Ch. 2.8 - What is total energy? Identify the different forms...Ch. 2.8 - List the forms of energy that contribute to the...Ch. 2.8 - How are heat, internal energy, and thermal energy...Ch. 2.8 - What is mechanical energy? How does it differ from...Ch. 2.8 - Portable electric heaters are commonly used to...Ch. 2.8 - Natural gas, which is mostly methane CH4, is a...Ch. 2.8 - Consider the falling of a rock off a cliff into...Ch. 2.8 - Electric power is to be generated by installing a...Ch. 2.8 - The specific kinetic energy of a moving mass is...
Ch. 2.8 - Determine the specific kinetic energy of a mass...Ch. 2.8 - Calculate the total potential energy, in Btu, of...Ch. 2.8 - Determine the specific potential energy, in kJ/kg,...Ch. 2.8 - An object whose mass is 100 kg is located 20 m...Ch. 2.8 - A water jet that leaves a nozzle at 60 m/s at a...Ch. 2.8 - Consider a river flowing toward a lake at an...Ch. 2.8 - At a certain location, wind is blowing steadily at...Ch. 2.8 - What is the caloric theory? When and why was it...Ch. 2.8 - In what forms can energy cross the boundaries of a...Ch. 2.8 - What is an adiabatic process? What is an adiabatic...Ch. 2.8 - When is the energy crossing the boundaries of a...Ch. 2.8 - Consider an automobile traveling at a constant...Ch. 2.8 - A room is heated by an iron that is left plugged...Ch. 2.8 - A room is heated as a result of solar radiation...Ch. 2.8 - A gas in a pistoncylinder device is compressed,...Ch. 2.8 - A small electrical motor produces 5 W of...Ch. 2.8 - A car is accelerated from rest to 85 km/h in 10 s....Ch. 2.8 - A construction crane lifts a prestressed concrete...Ch. 2.8 - Determine the torque applied to the shaft of a car...Ch. 2.8 - A spring whose spring constant is 200 lbf/in has...Ch. 2.8 - How much work, in kJ, can a spring whose spring...Ch. 2.8 - A ski lift has a one-way length of 1 km and a...Ch. 2.8 - The engine of a 1500-kg automobile has a power...Ch. 2.8 - A damaged 1200-kg car is being towed by a truck....Ch. 2.8 - As a spherical ammonia vapor bubble rises in...Ch. 2.8 - A steel rod of 0.5 cm diameter and 10 m length is...Ch. 2.8 - What are the different mechanisms for transferring...Ch. 2.8 - For a cycle, is the net work necessarily zero? For...Ch. 2.8 - On a hot summer day, a student turns his fan on...Ch. 2.8 - Water is being heated in a closed pan on top of a...Ch. 2.8 - An adiabatic closed system is accelerated from 0...Ch. 2.8 - A fan is to accelerate quiescent air to a velocity...Ch. 2.8 - A vertical pistoncylinder device contains water...Ch. 2.8 - At winter design conditions, a house is projected...Ch. 2.8 - A water pump increases the water pressure from 15...Ch. 2.8 - The lighting needs of a storage room are being met...Ch. 2.8 - A university campus has 200 classrooms and 400...Ch. 2.8 - Consider a room that is initially at the outdoor...Ch. 2.8 - An escalator in a shopping center is designed to...Ch. 2.8 - Consider a 2100-kg car cruising at constant speed...Ch. 2.8 - Prob. 51PCh. 2.8 - What is mechanical efficiency? What does a...Ch. 2.8 - How is the combined pumpmotor efficiency of a pump...Ch. 2.8 - Can the combined turbinegenerator efficiency be...Ch. 2.8 - Consider a 2.4-kW hooded electric open burner in...Ch. 2.8 - The steam requirements of a manufacturing facility...Ch. 2.8 - Reconsider Prob. 256E. Using appropriate software,...Ch. 2.8 - A 75-hp (shaft output) motor that has an...Ch. 2.8 - Prob. 59PCh. 2.8 - An exercise room has six weight-lifting machines...Ch. 2.8 - A room is cooled by circulating chilled water...Ch. 2.8 - The water in a large lake is to be used to...Ch. 2.8 - A 7-hp (shaft) pump is used to raise water to an...Ch. 2.8 - A geothermal pump is used to pump brine whose...Ch. 2.8 - At a certain location, wind is blowing steadily at...Ch. 2.8 - Reconsider Prob. 265. Using appropriate software,...Ch. 2.8 - Water is pumped from a lower reservoir to a higher...Ch. 2.8 - An 80-percent-efficient pump with a power input of...Ch. 2.8 - Water is pumped from a lake to a storage tank 15 m...Ch. 2.8 - Large wind turbines with a power capacity of 8 MW...Ch. 2.8 - A hydraulic turbine has 85 m of elevation...Ch. 2.8 - The water behind Hoover Dam in Nevada is 206 m...Ch. 2.8 - An oil pump is drawing 44 kW of electric power...Ch. 2.8 - A wind turbine is rotating at 15 rpm under steady...Ch. 2.8 - How does energy conversion affect the environment?...Ch. 2.8 - What is acid rain? Why is it called a rain? How do...Ch. 2.8 - Why is carbon monoxide a dangerous air pollutant?...Ch. 2.8 - What is the greenhouse effect? How does the excess...Ch. 2.8 - What is smog? What does it consist of? How does...Ch. 2.8 - Consider a household that uses 14,000 kWh of...Ch. 2.8 - When a hydrocarbon fuel is burned, almost all of...Ch. 2.8 - Prob. 82PCh. 2.8 - A typical car driven 20,000 km a year emits to the...Ch. 2.8 - Prob. 84PCh. 2.8 - What are the mechanisms of heat transfer?Ch. 2.8 - Which is a better heat conductor, diamond or...Ch. 2.8 - How does forced convection differ from natural...Ch. 2.8 - What is a blackbody? How do real bodies differ...Ch. 2.8 - Define emissivity and absorptivity. What is...Ch. 2.8 - Does any of the energy of the sun reach the earth...Ch. 2.8 - The inner and outer surfaces of a 5-m 6-m brick...Ch. 2.8 - The inner and outer surfaces of a 0.5-cm-thick 2-m...Ch. 2.8 - Reconsider Prob. 292. Using appropriate software,...Ch. 2.8 - Prob. 94PCh. 2.8 - Prob. 95PCh. 2.8 - Prob. 96PCh. 2.8 - Prob. 97PCh. 2.8 - For heat transfer purposes, a standing man can be...Ch. 2.8 - Prob. 99PCh. 2.8 - Prob. 100PCh. 2.8 - A 1000-W iron is left on the ironing board with...Ch. 2.8 - A 7-cm-external-diameter, 18-m-long hot-water pipe...Ch. 2.8 - A thin metal plate is insulated on the back and...Ch. 2.8 - Reconsider Prob. 2103. Using appropriate software,...Ch. 2.8 - The outer surface of a spacecraft in space has an...Ch. 2.8 - Prob. 106PCh. 2.8 - A hollow spherical iron container whose outer...Ch. 2.8 - Some engineers have developed a device that...Ch. 2.8 - Consider a classroom for 55 students and one...Ch. 2.8 - Consider a homeowner who is replacing his...Ch. 2.8 - Prob. 111RPCh. 2.8 - The U.S. Department of Energy estimates that...Ch. 2.8 - A typical household pays about 1200 a year on...Ch. 2.8 - Prob. 114RPCh. 2.8 - Prob. 115RPCh. 2.8 - Prob. 116RPCh. 2.8 - Consider a TV set that consumes 120 W of electric...Ch. 2.8 - Water is pumped from a 200-ft-deep well into a...Ch. 2.8 - Consider a vertical elevator whose cabin has a...Ch. 2.8 - Prob. 120RPCh. 2.8 - In a hydroelectric power plant, 65 m3/s of water...Ch. 2.8 - The demand for electric power is usually much...Ch. 2.8 - The pump of a water distribution system is powered...Ch. 2.8 - Prob. 124RPCh. 2.8 - A 2-kW electric resistance heater in a room is...Ch. 2.8 - Prob. 126FEPCh. 2.8 - A 75-hp compressor in a facility that operates at...Ch. 2.8 - On a hot summer day, the air in a well-sealed room...Ch. 2.8 - A fan is to accelerate quiescent air to a velocity...Ch. 2.8 - A 900-kg car cruising at a constant speed of 60...Ch. 2.8 - Prob. 131FEPCh. 2.8 - Prob. 132FEPCh. 2.8 - A 2-kW pump is used to pump kerosene ( = 0.820...Ch. 2.8 - Prob. 134FEPCh. 2.8 - Prob. 135FEPCh. 2.8 - Prob. 136FEPCh. 2.8 - Prob. 137FEPCh. 2.8 - Heat is transferred steadily through a...Ch. 2.8 - The roof of an electrically heated house is 7 m...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Three rigid bodies, 2,3, and 4, are connected by four springs as shown in the figure. A horizontal force of 1,0...
Introduction To Finite Element Analysis And Design
Steady state conduction rate to the warm compressor to the net power produces theoretically by thermodynamic ba...
Introduction to Heat Transfer
How is the hydrodynamic entry length defined for flow in a pipe? Is the entry length longer in laminar or turbu...
Fluid Mechanics Fundamentals And Applications
What types of polymers are most commonly blow molded?
DeGarmo's Materials and Processes in Manufacturing
Determine the length of the cantilevered beam so that the maximum bending stress in the beam is equivalent to t...
Mechanics of Materials (10th Edition)
A biological fluid moves at a flow rate of m=0.02kg/s through a coiled, thin-walled, 5-mm-diameter tube submerg...
Fundamentals of Heat and Mass Transfer
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Water flows steadily at a rate of 80 kg/min through a pump. The water pressure is increased from 100 kPa to 5150 kPa. The average specific volume of water is 0.0015 m³/kg. Determine the hydraulic power delivered to the water by the pump in Kw.arrow_forwardThe pump of a water distribution system is powered by a 15-kW electric motor whose efficiency is 90 %. The water flow rate through the pump is 50 L/s. The diameters of the inlet and outlet pipes are the same, and the elevation difference across the pump is negligible. If the absolute pressures at the inlet and outlet of the pump are measured to be 100 kPa and 300 kPa, respectively, determine: (a) the mechanical efficiency of the pump (b) the temperature rise of water as it flows through the pump due to mechanical inefficiencies. 300 kPa 100 kPa 1 Water 450 L/s ① W. pump nmotor = 90% Motor 15 kWarrow_forwardThe pump of a water distribution system is powered by a 15-kW electric motor whose efficiency is 90 percent. The water flow rate through the pump is 50 L/s. The diameters of the inlet and outlet pipes are the same, and the elevation difference across the pump is negligible. If the absolute pressures at the inlet and outlet of the pump are measured to be 100 kPa and 300 kPa, respectively, determine (a) the mechanical efficiency of the pump and (b) the temperature rise of water as it flows through the pump due to mechanical inefficiencies.arrow_forward
- 2. 80 m below the free surface of a large water reservoir that can supply water at a rate of 2200 kg/s steadily. If the mechanical power output of the turbine is 1400 kW, determine the turbine efficiency. Neglect losses in the pipes. The gravitational acceleration is g-9.81m/s². Generator h = 80 m Turbine m 2200 kg/sarrow_forwardOn a hot summer day, the air in a well-sealed room is circulated by a 55 W fan (Note that the motor delivers 55 W of net shaft power to the fan). A anemometer sensor measures 13 m/s air velocity at a rate 0.5 m3/s (air density is 1.15 kg/m3). If the mechanical efficiency and flow efficiency are the same, calculate this efficiency and than give the rate of the electric energy .supply to the fan motor None of these .a W 216 b W 69.5 .c W 73 .d W 62 .e W 87 .farrow_forwardThe compressor work of an air compressor is 100 KW. If the piston speed is 15 m³/sec, determine the mean effective pressure.arrow_forward
- A pump takes water at 60°F from a large reservoir and delivers it to the bottom of an open elevated tank 25 ft above the reservoir surface through a 3 inch ID pipe. The inlet to the pump is located 10 ft below the water surface, and the water level in the tank is constant at 160 ft above the reservoir surface. The pump delivers 150 gal/min. If the total loss of energy due to friction in the piping system is 35 ft·lbf/lb, Calculate the horsepower required to do the pumping. The pump and its motor have an overall efficiency of 55 %. i. Determine the velocity of the water at point 2 in ft/s. ii. Assuming that the large open reservoir is open to the atmosphere as well, which of the following equations best describes the mechanical energy balance for the system? iii.The Reynolds number for the flow is?arrow_forwardA pump takes water at 60°F from a large reservoir and delivers it to the bottom of an open elevated tank 25 ft above the reservoir surface through a 3 inch ID pipe. The inlet to the pump is located 10 ft below the water surface, and the water level in the tank is constant at 160 ft above the reservoir surface. The pump delivers 150 gal/min. If the total loss of energy due to friction in the piping system is 35 ft·lbf/lb, Calculate the horsepower required to do the pumping. The pump and its motor have an overall efficiency of 55 %. i. What is Delta Z (Z2 - Z1) ? in ft. ii. Determine the theoretical shaft work required in foot-pound force per pound mass.. iii.Determine the actual shaft work needed for this particular mass flow rate in (ft-lbf)/s.arrow_forwardWhen water is pumped into a water tank 20 m above a lake with a flow rate of 70 l/s, 20.4kW of electrical power is consumed. Determine the efficiency of the pump-motor group by ignoring the friction losses in the pipes and the change in kinetic energy. Determine the pressure difference between the inlet and outlet of the pump.arrow_forward
- A reciprocating compressor draws in 500 cubic feet per minute of air whose density is 0.079 lbm/cu ft and discharges it with a density of 0.304 lbm/cu ft. At the suction, p1=15 psia; at discharge, p2=80 psia. The increase in the specific internal energy is 33.8 Btu/lbm. Determine the work on the air in Btu/min and in hp. Neglect change in kinetic energy.arrow_forwardWater is to be pumped from the bottom of a well 20 ft deep with a specific heat of 1 BTU/lbm F is pumped using a 1-hp jet pump. Heat is lost from the whole system at the constant rate of 500 BTU/min. What is the temperature (℉) of the water as it enters the storage tank assuming that the well water is at 35℉?arrow_forwardWater is pumped from a 200-ft-deep well into a 100-ft-high storage tank. Determine the power, in kW, that would be required to pump 200 gal/min.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license