Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 27.3, Problem 1CE
A wire carrying current I is perpendicular to a magnetic field of strength B. Assuming a fixed length of wire, which of the following changes will result in decreasing the force on the wire by a factor of 2? (a) Decrease the angle from 90° to 45°; (b) decrease the angle from 90° to 30°; (c) decrease the current in the wire to I/2; (d) decrease the magnetic field strength to B/2; (e) none of these will do it.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 27 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 27.1 - Prob. 1AECh. 27.2 - Prob. 1BECh. 27.3 - A wire carrying current I is perpendicular to a...Ch. 27.3 - A straight power line carries 30A and is...Ch. 27.4 - Prob. 1EECh. 27.4 - What is the sign of the charge in Fig. 2719? How...Ch. 27.4 - A particle in a velocity selector as diagrammed in...Ch. 27 - A compass needle is not always balanced parallel...Ch. 27 - Prob. 2QCh. 27 - A horseshoe magnet is held vertically with the...
Ch. 27 - In the relation F=IlB, which pairs of the vectors...Ch. 27 - The magnetic field due to current in wires in your...Ch. 27 - If a negatively charged particle enters a region...Ch. 27 - In Fig. 2734, charged particles move in the...Ch. 27 - A positively charged particle in a nonuniform...Ch. 27 - Note that the pattern of magnetic field lines...Ch. 27 - Explain why a strong magnet held near a CRT...Ch. 27 - Describe the trajectory of a negatively charged...Ch. 27 - Can you set a resting electron into motion with a...Ch. 27 - A charged particle is moving in a circle under the...Ch. 27 - The force on a particle in a magnetic field is the...Ch. 27 - A beam of electrons is directed toward a...Ch. 27 - A charged particle moves in a straight line...Ch. 27 - If a moving charged particle is deflected sideways...Ch. 27 - How could you tell whether moving electrons in a...Ch. 27 - How can you make a compass without using iron or...Ch. 27 - Prob. 20QCh. 27 - In what positions (if any) will a current loop...Ch. 27 - A rectangular piece of semiconductor is inserted...Ch. 27 - Two ions have the same mass, but one is singly...Ch. 27 - (I) (a) What is the force per meter of length on a...Ch. 27 - (I) Calculate the magnitude of the magnetic force...Ch. 27 - (I) A 1.6-m length of wire carrying 4.5 A of...Ch. 27 - (II) The magnetic force per meter on a wire is...Ch. 27 - (II) The force on a wire is a maximum of 7.50 102...Ch. 27 - (II) Suppose a straight 1.00-mm-diameter copper...Ch. 27 - Prob. 7PCh. 27 - (II) A long wire stretches along the x axis and...Ch. 27 - (II) A current-carrying circular loop of wire...Ch. 27 - (II) A 2.0-m-long wire carries a current of 8.2 A...Ch. 27 - Prob. 11PCh. 27 - (III) A circular loop of wire, of radius r,...Ch. 27 - (I) Determine the magnitude and direction of the...Ch. 27 - (I) An electron is projected vertically upward...Ch. 27 - (I) Alpha particles of charge q = +2e and mass m =...Ch. 27 - (I) Kind the direction of the force on a negative...Ch. 27 - (I) Determine the direction of B for each ease in...Ch. 27 - Prob. 18PCh. 27 - (II) A doubly charged helium atom whose mass is...Ch. 27 - (II) A proton (mass mp), a deuteron (m = 2mp, Q =...Ch. 27 - (II) For a particle of mass m and charge q moving...Ch. 27 - (II) An electron moves with velocity...Ch. 27 - (II) A 6.0-MeV (kinetic energy) proton enters a...Ch. 27 - (II) An electron experiences the greatest force as...Ch. 27 - (II) A proton moves through a region of space...Ch. 27 - (II) An electron experiences a force...Ch. 27 - (II) A particle of charge q moves in a circular...Ch. 27 - (II) An electron enters a uniform magnetic field B...Ch. 27 - Prob. 29PCh. 27 - (II) The path of protons emerging from an...Ch. 27 - (III) Suppose the Earths magnetic field at the...Ch. 27 - Prob. 32PCh. 27 - (III) A proton moving with speed = 1.3 105 m/s...Ch. 27 - (III) A particle with charge +q and mass m travels...Ch. 27 - (I) How much work is required to rotate the...Ch. 27 - (I) A 13.0-cm-diameter circular loop of wire is...Ch. 27 - (II) A circular coil 18.0 cm in diameter and...Ch. 27 - (II) Show that the magnetic dipole moment of an...Ch. 27 - (II) A 15-loop circular coil 22 cm in diameter...Ch. 27 - (III) Suppose a nonconducting rod of length d...Ch. 27 - (I) If the current to a motor drops by 12%, by...Ch. 27 - (I) A galvanometer needle deflects full scale for...Ch. 27 - (I) If the restoring spring of a galvanometer...Ch. 27 - Prob. 44PCh. 27 - (II) An oil drop whose mass is determined to be...Ch. 27 - (II) A Hall probe, consisting of a rectangular...Ch. 27 - (II) A Hall probe used to measure magnetic field...Ch. 27 - (II) A rectangular sample of a metal is 3.0 cm...Ch. 27 - (II) In a probe that uses the Hall effect to...Ch. 27 - Prob. 50PCh. 27 - Prob. 51PCh. 27 - (II) One form of mass spectrometer accelerates...Ch. 27 - (II) Suppose the electric field between the...Ch. 27 - (II) A mass spectrometer is being used to monitor...Ch. 27 - (II) An unknown particle moves in a straight line...Ch. 27 - Protons move in a circle of radius 5.10 cm in a...Ch. 27 - Protons with momentum 3.8 1016 kg m/s are...Ch. 27 - A proton and an electron have the same kinetic...Ch. 27 - Prob. 59GPCh. 27 - Prob. 60GPCh. 27 - Near the equator, the Earths magnetic field points...Ch. 27 - Calculate the magnetic force on an airplane which...Ch. 27 - A motor run by a 9.0-V battery has a 20 turn...Ch. 27 - Estimate the approximate maximum deflection of the...Ch. 27 - Prob. 65GPCh. 27 - The cyclotron (Fig. 2750) is a device used to...Ch. 27 - Magnetic fields are very useful in particle...Ch. 27 - A square loop of aluminum wire is 20.0 cm on a...Ch. 27 - A sort of projectile launcher is shown in Fig....Ch. 27 - Prob. 70GPCh. 27 - In a certain cathode ray tube, electrons are...Ch. 27 - Prob. 72GPCh. 27 - A proton follows a spiral path through a gas in a...Ch. 27 - Prob. 74GPCh. 27 - The power cable for an electric trolley (Fig....Ch. 27 - A uniform conducting rod of length d and mass m...Ch. 27 - In a simple device for measuring the magnitude B...
Additional Science Textbook Solutions
Find more solutions based on key concepts
18. SCIENTIFIC THINKING By measuring the fossil remains of Homo floresiensis, scientists have estimated its wei...
Campbell Biology: Concepts & Connections (9th Edition)
Why are BSL-4 suits pressurized? Why not just wear tough regular suits?
Microbiology with Diseases by Body System (5th Edition)
45. An automobile gasoline tank holds 42 kg of gasoline. When the gasoline burns, 168 kg of oxygen are consumed...
Introductory Chemistry (6th Edition)
All of the following processes are involved in the carbon cycle except: a. photosynthesis b. cell respiration c...
Human Biology: Concepts and Current Issues (8th Edition)
Chlorine has two isotopes, 35Cl and 37Cl; 75.77% of chlorine is 35Cl, and 24.23% is 37Cl. The atomic mass of 35...
Organic Chemistry (8th Edition)
The bioremediation process shown in the photograph is used to remove benzene and other hydrocarbons from soil c...
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A wire 2.80 m in length carries a current of 5.00 A in a region where a uniform magnetic field has a magnitude of 0.390 T. Calculate the magnitude of the magnetic force on the wire assuming the angle between the magnetic field and the current is (a) 60.0, (b) 90.0, and (c) 120.arrow_forwardA long, straight, horizontal wire carries a left-to-right current of 20 A. If the wire is placed in a uniform magnetic field of magnitude 4.0105 T that is directed vertically downward, what is tire resultant magnitude of the magnetic field 20 cm above the wire? 20 cm below the wire?arrow_forwardTwo long coaxial copper tubes, each of length L, are connected to a battery of voltage V. The inner tube has inner radius o and outer radius b, and the outer tube has inner radius c and outer radius d. The tubes are then disconnected from the battery and rotated in the same direction at angular speed of radians per second about their common axis. Find the magnetic field (a) at a point inside the space enclosed by the inner tube r d. (Hint: Hunk of copper tubes as a capacitor and find the charge density based on the voltage applied, Q=VC, C=20LIn(c/b) .)arrow_forward
- The accompanying figure shows a cross-section of a long, hollow, cylindrical conductor of inner radius r1= 3.0 cm and outer radius r2= 5.0 cm. A 50-A current distributed uniformly over the cross-section flows into the page. Calculate the magnetic field at r = 2.0 cm. r = 4.0 cm. and r = 6.0 cm.arrow_forwardA magnetic field directed into the page changes with time according to B = 0.030 0t2 + 1.40, where B is in teslas and t is in seconds. The field has a circular cross section of radius R = 2.50 cm (see Fig. P23.28). When t = 3.00 s and r2 = 0.020 0 m, what are (a) the magnitude and (b) the direction of the electric field at point P2?arrow_forwardA cosmic-ray proton in interstellar space has an energy of 10.0 MeV and executes a circular orbit having a radius equal to that of Mercury’s orbit around the Sun (5.80 × 1010 m). What is the magnetic field in that region of space?arrow_forward
- A cosmic-ray electron moves at 7.5 × 106 m/sinches perpendicular to Earth’s magnetic field at an altitude queer the field strength is 1.0 × 105T. What is the radius of the circular path the electron follows?arrow_forwardA long, straight wire lies on a horizontal table and carries a current of 1.20 μA. In a vacuum, a proton moves parallel to the wire (opposite the current) with a constant speed of 2.30 × 104 m/s at a distance d above the wire. Ignoring the magnetic field due to the Earth, determine the value of d.arrow_forwardWhat magnetic field is required in order to confine a proton moving with a speed of 4.0 × 106 m/s to a circular orbit of radius 10 cm?arrow_forward
- The magnetic field perpendicular to a single sire loop of diameter 10.0 cm decreases fron 0.50 T to zero. The re Is made of copper and has a diameter of 2.0 mm and length 1.0 cm. How much charge moves thrnugh the re while tt field is changing?arrow_forwardWhen the current through a circular loop is 6.0 A, the magnetic field at its center is 2.0104 T. What is the radius of the loop?arrow_forwardA long, straight wire carries a current I (Fig. OQ22.10). Which of the following statements is true regarding the magnetic field due to the wire? More than one statement may be correct. (a) The magnitude is proportional to I/r, and the direction is out of the page at P. (b) The magnitude is proportional to I/r2, and the direction is out of the page at P. (c) The magnitude is proportional to I/r, and the direction is into the page at P. (d) The magnitude is proportional to I/r2, and the direction is into the page at P. (e) The magnitude is proportional to I, but does not depend on r. Figure OQ22.10arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY