Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 27, Problem 50P
(a)
To determine
Whether the sign of the ions influence the emf
(b)
To determine
The flow of the velocity.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(b) Calculate the output voltage in Fig. Q4(b) given Rf=470k2, R1 = 4.3kN, R2 = 33kN and R3
= 33kN.
Rf
Rf
Rf
RI
R2
R3
Vo
S0µV
Figure Q4(b)
1F
IF
6V
6 V
10
(A)
(B)
Figure 1:
Unreasonable ResultsIn a recording of voltages due to brain activity (an EEG), a 10.0 mV signal with a 0.500 Hz frequency is applied to a capacitor, producing a current of 100 mA. Resistance is negligible. (a) What is the capacitance? (b) What is unreasonable about this result? (c) Which assumption or premise is responsible?
Chapter 27 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 27.1 - Prob. 1AECh. 27.2 - Prob. 1BECh. 27.3 - A wire carrying current I is perpendicular to a...Ch. 27.3 - A straight power line carries 30A and is...Ch. 27.4 - Prob. 1EECh. 27.4 - What is the sign of the charge in Fig. 2719? How...Ch. 27.4 - A particle in a velocity selector as diagrammed in...Ch. 27 - A compass needle is not always balanced parallel...Ch. 27 - Prob. 2QCh. 27 - A horseshoe magnet is held vertically with the...
Ch. 27 - In the relation F=IlB, which pairs of the vectors...Ch. 27 - The magnetic field due to current in wires in your...Ch. 27 - If a negatively charged particle enters a region...Ch. 27 - In Fig. 2734, charged particles move in the...Ch. 27 - A positively charged particle in a nonuniform...Ch. 27 - Note that the pattern of magnetic field lines...Ch. 27 - Explain why a strong magnet held near a CRT...Ch. 27 - Describe the trajectory of a negatively charged...Ch. 27 - Can you set a resting electron into motion with a...Ch. 27 - A charged particle is moving in a circle under the...Ch. 27 - The force on a particle in a magnetic field is the...Ch. 27 - A beam of electrons is directed toward a...Ch. 27 - A charged particle moves in a straight line...Ch. 27 - If a moving charged particle is deflected sideways...Ch. 27 - How could you tell whether moving electrons in a...Ch. 27 - How can you make a compass without using iron or...Ch. 27 - Prob. 20QCh. 27 - In what positions (if any) will a current loop...Ch. 27 - A rectangular piece of semiconductor is inserted...Ch. 27 - Two ions have the same mass, but one is singly...Ch. 27 - (I) (a) What is the force per meter of length on a...Ch. 27 - (I) Calculate the magnitude of the magnetic force...Ch. 27 - (I) A 1.6-m length of wire carrying 4.5 A of...Ch. 27 - (II) The magnetic force per meter on a wire is...Ch. 27 - (II) The force on a wire is a maximum of 7.50 102...Ch. 27 - (II) Suppose a straight 1.00-mm-diameter copper...Ch. 27 - Prob. 7PCh. 27 - (II) A long wire stretches along the x axis and...Ch. 27 - (II) A current-carrying circular loop of wire...Ch. 27 - (II) A 2.0-m-long wire carries a current of 8.2 A...Ch. 27 - Prob. 11PCh. 27 - (III) A circular loop of wire, of radius r,...Ch. 27 - (I) Determine the magnitude and direction of the...Ch. 27 - (I) An electron is projected vertically upward...Ch. 27 - (I) Alpha particles of charge q = +2e and mass m =...Ch. 27 - (I) Kind the direction of the force on a negative...Ch. 27 - (I) Determine the direction of B for each ease in...Ch. 27 - Prob. 18PCh. 27 - (II) A doubly charged helium atom whose mass is...Ch. 27 - (II) A proton (mass mp), a deuteron (m = 2mp, Q =...Ch. 27 - (II) For a particle of mass m and charge q moving...Ch. 27 - (II) An electron moves with velocity...Ch. 27 - (II) A 6.0-MeV (kinetic energy) proton enters a...Ch. 27 - (II) An electron experiences the greatest force as...Ch. 27 - (II) A proton moves through a region of space...Ch. 27 - (II) An electron experiences a force...Ch. 27 - (II) A particle of charge q moves in a circular...Ch. 27 - (II) An electron enters a uniform magnetic field B...Ch. 27 - Prob. 29PCh. 27 - (II) The path of protons emerging from an...Ch. 27 - (III) Suppose the Earths magnetic field at the...Ch. 27 - Prob. 32PCh. 27 - (III) A proton moving with speed = 1.3 105 m/s...Ch. 27 - (III) A particle with charge +q and mass m travels...Ch. 27 - (I) How much work is required to rotate the...Ch. 27 - (I) A 13.0-cm-diameter circular loop of wire is...Ch. 27 - (II) A circular coil 18.0 cm in diameter and...Ch. 27 - (II) Show that the magnetic dipole moment of an...Ch. 27 - (II) A 15-loop circular coil 22 cm in diameter...Ch. 27 - (III) Suppose a nonconducting rod of length d...Ch. 27 - (I) If the current to a motor drops by 12%, by...Ch. 27 - (I) A galvanometer needle deflects full scale for...Ch. 27 - (I) If the restoring spring of a galvanometer...Ch. 27 - Prob. 44PCh. 27 - (II) An oil drop whose mass is determined to be...Ch. 27 - (II) A Hall probe, consisting of a rectangular...Ch. 27 - (II) A Hall probe used to measure magnetic field...Ch. 27 - (II) A rectangular sample of a metal is 3.0 cm...Ch. 27 - (II) In a probe that uses the Hall effect to...Ch. 27 - Prob. 50PCh. 27 - Prob. 51PCh. 27 - (II) One form of mass spectrometer accelerates...Ch. 27 - (II) Suppose the electric field between the...Ch. 27 - (II) A mass spectrometer is being used to monitor...Ch. 27 - (II) An unknown particle moves in a straight line...Ch. 27 - Protons move in a circle of radius 5.10 cm in a...Ch. 27 - Protons with momentum 3.8 1016 kg m/s are...Ch. 27 - A proton and an electron have the same kinetic...Ch. 27 - Prob. 59GPCh. 27 - Prob. 60GPCh. 27 - Near the equator, the Earths magnetic field points...Ch. 27 - Calculate the magnetic force on an airplane which...Ch. 27 - A motor run by a 9.0-V battery has a 20 turn...Ch. 27 - Estimate the approximate maximum deflection of the...Ch. 27 - Prob. 65GPCh. 27 - The cyclotron (Fig. 2750) is a device used to...Ch. 27 - Magnetic fields are very useful in particle...Ch. 27 - A square loop of aluminum wire is 20.0 cm on a...Ch. 27 - A sort of projectile launcher is shown in Fig....Ch. 27 - Prob. 70GPCh. 27 - In a certain cathode ray tube, electrons are...Ch. 27 - Prob. 72GPCh. 27 - A proton follows a spiral path through a gas in a...Ch. 27 - Prob. 74GPCh. 27 - The power cable for an electric trolley (Fig....Ch. 27 - A uniform conducting rod of length d and mass m...Ch. 27 - In a simple device for measuring the magnitude B...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The density of charge carriers far copper is 8.471028 electrons per cubic meter. What will be the Hall voltage reading from a probe made up of 3cm2cm1cm ( (LWT) ) copper plate when a current of 1.5 A is passed through it in a magnetic field of 2.5 T perpendicular to the 3cm2cm .arrow_forwardUsing an electromagnetic flowmeter (Fig. P19.69), a heart surgeon monitors the flow rate of blood through an artery. Electrodes A and B make contact with the outer surface of the blood vessel, which has interior diameter 3.00 mm. (a) For a magnetic field magnitude of 0.040 0 T, a potential difference of 160 V appears between the electrodes. Calculate the speed of the blood. (b) Verify that electrode A is positive, as shown. Does the sign of the emf depend on whether the mobile ions in the blood are predominantly positively or negatively charged? Explain. Figure P19.69arrow_forwardCheck your Understanding Repeat the calculations from the previous example for I0=0.040A .arrow_forward
- Hall potentials are much larger for poor conductors than for good conductors. Why?arrow_forwardCalculate the Hall voltage on a strip of wire that has a width of 3.5 μm if the magnetic field is 1700 V/m.arrow_forwardA 7.50 nF capacitor is charged to 12.0 V, then disconnectedfrom the power supply and connected in series through a coil. The periodof oscillation of the circuit is then measured to be 8.60 * 10^-5 s.Calculate:the total energy of the circuitarrow_forward
- In an A. C. circuit, the flowing current is I = 5 sin (100 t - t/2) A and the potential difference is V = 200 sin (100 t)V. The power consumption is equal to %3Darrow_forwardBacteria can be identified by using a time-of-flight mass spectrometer to measure their chemical composition. First, a very short laser pulse vaporizes and ionizes a bacterial sample. The positive ions are accelerated, in vacuum, through a -15 kV potential difference, and then they travel at constant speed through a 1.5-m-long drift tube to a detector that records their arrival times. An ion's time of flight depends on its mass, so a record of the arrival times can be used to determine the masses of the biomolecules that were released from the bacteria. Each type of bacteria has a unique set of proteins with different masses, so the mass spectrum is a fingerprint for identifying bacteria. Part A What is the mass in kDa of an ionized protein that is detected 51 us after the laser pulse? You can assume that the protein is singly ionized (g = +e) which is mostly true in practice. You can also neglect the time needed to accelerate through the potential difference because it is very small…arrow_forwardExample: Besl If a coil conductor is connected to a 3 kQ resistor, what would be the rated voltage and current that would be measured if the north pole of the magnet is moving closer to the coil conductor and the rate of change of flux is 3 wb/s and the number of turns is three? AN-( AV- (c) Bmas coll V I N S Given: N = 3 turns 3.0 ko Figure 1. (a) When this bar magnet is thrusted into the coil, the strength of the magnetic field B increases in the coil. The current induced in the coil creates another field, in the opposite I direction of the bar magnets to oppose the increase. This is one aspect of Lenz's law-induction opposes any change in flux. (b) and (c) are two other situations. Verify for yourself that the direction of the induced Bcoil shown indeed opposes the change in flux 40 and that the current direction shown is consistent with = 3 wb/s dt R= 3 kO = 3 x 103 Q N Solution: wb e = N= dt = (3) (3) = 9 V I | S the right-hand rule in Attachment A.1. By following Fig. 1 (a) it…arrow_forward
- A 7.50 nF capacitor is charged to 12.0 V, then disconnectedfrom the power supply and connected in series through a coil. The periodof oscillation of the circuit is then measured to be 8.60 * 10^-5 s.Calculate:the maximum current in the circuitarrow_forwardA four pole machine generates 250V when operated at 1500rpm. If the flux per pole is 1.085x10^6 Maxwells, the number of armature slots is 45 and the armature winding has two parallel paths, Calculate (a) the total number of armature conductors, (b) the number of conductors each slot.arrow_forwardI need the answer as soon as possiblearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning