Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 27, Problem 73AP
To determine
The coefficient
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The resistivity of gold at room temperature is 2.35 x 10-8 ohm-m. The temperature coefficient alpha = 3.98 x 10-3/K. What will be the resistivity of a piece of gold whose temperature is 150°C above room temperature?
The resistance of the tungsten filament of an
incandescent light bulb at 22 degC is 34 Ohms. If the
light bulb is connected to a voltage of 126 V a current
of 0.36 A flows through the filament. What will be the
temperature of the light bulb filament under working
conditions? The temperature coefficient of resistance
of tungsten is 4.6E-3 1/degC. Your answer must be in
degC, other scales are not accepted.
sq
4. Maximum surface resistance. Consider a square sheet of side L, thickness d, and
electrical resistivity p. The resistance measured between opposite edges of the sheet
is called the surface resistance: R = pL/ Ld = p/d, which is independent of the
area of the sheet. (R is called the resistance per square and is expected in ohms
per square, because p/d has the dimensions of ohms.) If we express p by
p=m/ne²t, then Rq=m/ndet. Suppose now that the minimum value of the
collision time is determined by scattering from surfaces of the sheet, so that
Td/v, where v is the Fermi velocity. Thus the maximum surface resistivity is
Rmvp/nd²e². Show for a monatomic metal sheet one atom thickness that
sq
Rħ/e² = 4.1k, where lkn is 10³ ohms.
sq
Chapter 27 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Ch. 27.1 - Consider positive and negative charges of equal...Ch. 27.2 - Prob. 27.2QQCh. 27.2 - Prob. 27.3QQCh. 27.4 - When does an incandescent lightbulb carry more...Ch. 27.6 - Prob. 27.5QQCh. 27 - Prob. 1OQCh. 27 - Prob. 2OQCh. 27 - Prob. 3OQCh. 27 - Prob. 4OQCh. 27 - Prob. 5OQ
Ch. 27 - Prob. 6OQCh. 27 - Prob. 7OQCh. 27 - Prob. 8OQCh. 27 - Prob. 9OQCh. 27 - Prob. 10OQCh. 27 - Prob. 11OQCh. 27 - Prob. 12OQCh. 27 - Prob. 13OQCh. 27 - Prob. 1CQCh. 27 - Prob. 2CQCh. 27 - Prob. 3CQCh. 27 - Prob. 4CQCh. 27 - Prob. 5CQCh. 27 - Prob. 6CQCh. 27 - Prob. 7CQCh. 27 - Prob. 8CQCh. 27 - Prob. 1PCh. 27 - A small sphere that carries a charge q is whirled...Ch. 27 - Prob. 3PCh. 27 - Prob. 4PCh. 27 - Prob. 5PCh. 27 - Prob. 6PCh. 27 - Prob. 7PCh. 27 - Prob. 8PCh. 27 - The quantity of charge q (in coulombs) that has...Ch. 27 - Prob. 10PCh. 27 - Prob. 11PCh. 27 - Prob. 12PCh. 27 - Prob. 13PCh. 27 - Prob. 14PCh. 27 - A wire 50.0 m long and 2.00 mm in diameter is...Ch. 27 - A 0.900-V potential difference is maintained...Ch. 27 - Prob. 17PCh. 27 - Prob. 18PCh. 27 - Prob. 19PCh. 27 - Prob. 20PCh. 27 - Prob. 21PCh. 27 - Prob. 22PCh. 27 - Prob. 23PCh. 27 - Prob. 24PCh. 27 - Prob. 25PCh. 27 - Prob. 26PCh. 27 - Prob. 27PCh. 27 - While taking photographs in Death Valley on a day...Ch. 27 - Prob. 29PCh. 27 - Prob. 30PCh. 27 - Prob. 31PCh. 27 - Prob. 32PCh. 27 - Prob. 33PCh. 27 - Prob. 34PCh. 27 - At what temperature will aluminum have a...Ch. 27 - Assume that global lightning on the Earth...Ch. 27 - Prob. 37PCh. 27 - Prob. 38PCh. 27 - Prob. 39PCh. 27 - The potential difference across a resting neuron...Ch. 27 - Prob. 41PCh. 27 - Prob. 42PCh. 27 - Prob. 43PCh. 27 - Prob. 44PCh. 27 - Prob. 45PCh. 27 - Prob. 46PCh. 27 - Prob. 47PCh. 27 - Prob. 48PCh. 27 - Prob. 49PCh. 27 - Prob. 50PCh. 27 - Prob. 51PCh. 27 - Prob. 52PCh. 27 - Prob. 53PCh. 27 - Prob. 54PCh. 27 - Prob. 55PCh. 27 - Prob. 56PCh. 27 - Prob. 57APCh. 27 - Prob. 58APCh. 27 - Prob. 59APCh. 27 - Prob. 60APCh. 27 - Prob. 61APCh. 27 - Prob. 62APCh. 27 - Prob. 63APCh. 27 - Review. An office worker uses an immersion heater...Ch. 27 - Prob. 65APCh. 27 - Prob. 66APCh. 27 - Prob. 67APCh. 27 - Prob. 68APCh. 27 - Prob. 69APCh. 27 - Prob. 70APCh. 27 - Prob. 71APCh. 27 - Prob. 72APCh. 27 - Prob. 73APCh. 27 - Prob. 74APCh. 27 - Prob. 75APCh. 27 - Prob. 76APCh. 27 - Review. A parallel-plate capacitor consists of...Ch. 27 - The dielectric material between the plates of a...Ch. 27 - Prob. 79APCh. 27 - Prob. 80APCh. 27 - Prob. 81APCh. 27 - Prob. 82CPCh. 27 - Prob. 83CPCh. 27 - Material with uniform resistivity is formed into...Ch. 27 - Prob. 85CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A tungsten wire is used to determine the melting point of indium. The resistance of the tungsten wire is 2.788 at 20.0°C and increases to 5.636 as the indium starts to melt. αtungsten = 4.50 x 10−3 (°C)−1. What is the melting temperature of indium in °C?arrow_forwardQ1: A conductive wire has a resistivity of (0.649x10-8(Q.m)') at room temperature are (5.8x10* ) conduction electron/m3.Calculate the mobility, resistivity and relaxation time of electrons.arrow_forwardProblem 3: A 1.2 g wire has a density of 2.7 g/cm3 and a resistivity of 2.7 × 10−8 Ωm. The wire has a resistance of 15 Ω. a) How long is the wire? b) The wire is made up of atoms with valence 1 and molar mass 26.98 g/mol. What is the drift speed of the electrons when there is a voltage drop of 30 V across the wire?arrow_forward
- Q*: Calculate the drift velocity and mean free path of copper when it carries a steady current of 10 amperes and whose radius is 0.08 cm. Assume that the mean thermal velocity 1.6 x 10° m/s and the resistivity of copper 2 x 10 marrow_forwardThe resistivity of pure germanium = 600 x 10-³ Nm. Calculate the resistance of a cylinder of pure germanium with a radius of 1.5 mm and a length 7.0 mm. Note the units of millimeters. R= How long would a cylinder of this radius need to be in order for the resistance of pure germanium to be equal to 2250 ohms? L= mmarrow_forwardA tungsten wire has a radius of 0.098 mm and is heated from 20.0 to 1333 oC. The temperature coefficient of resistivity is α = 4.5 × 10-3 (Co)-1. When 170 V is applied across the ends of the hot wire, a current of 1.9 A is produced. How long is the wire? Neglect any effects due to thermal expansion of the wire. I will rate. solve correctly.arrow_forward
- Please don't provide handwritten solution ....arrow_forwardResistance in metals increases with increasing temperature according to the equation, ρ(T) = ρo(1 + α(T - To)) where α is the temperature coefficient of resistivity and ρo is the resistivity at temperature To. For a particular wire α = 9.5 × 10-3 1/°C and the resistivity is ρo = 4.5 × 10-7 Ω⋅m at To = 154 °C. a). Input an expression for the temperature T2 at which the resistance of a wire will be twice as high as at T0. b). If the wire is L = 1 m long with a radius of r = 1 cm, what is its resistance R, in Ω, at 2To?arrow_forward2. a) The resistivity of copper is 1.7241 x 10-8 (22-m) at 20°C. What is the conductivity of copper at 27°C in units of (0-m)-¹ and (0-cm)-1 if the temperature coefficient of resistivity of copper is 3.9 x 10-³/°C? b) Explain the change of conductivity with temperature. 2 For carbon: - 35 x 10-50-m and g --50 x 10-4 1°Carrow_forward
- A platinum resistance thermometer (PRT) is a transducer which measures temperature 0 by means of consequent change of electrical resistance RT between its two terminals. Such a PRT has the following quadratic characteristic: RT=Ro [1+A0+BO^2] The PRT is calibrated so that its resistance is Ro = 100 Q at a reference temperature of 0 = 0°C. The coefficients have the following values: A = +4.0 x 10-3 °C-1 B = -5.0 x 10-6 oc-2 Determine sensitivity of this transducer at temperatures of +50 °C. Select one: O a. 0.45 Q/°C Ob. -0.45 Q/°C -0.35 Ω/ΟC d. 0.4 0/°C O e. 0.35 Q/°C O f. -0.4 0/PCarrow_forwardA more general definition of the temperature coefficient of resistivity is α =1ρ|dρdT|where ρ is the resistivity at temperature T. (a) Assuming α is constant, show that ρ = ρ0eα(T−T0) where ρ0 is the resistivity at temperature T0. (b) Using the series expansion ex ≈ 1 + x for x << 1, show that the resistivity is given approximately by the expression ρ = ρ0[1 + α(T − T0)] for α(T − T0) ≪ 1arrow_forwardIn the classic model for electrical conduction, electron mobility u in a metal wire is defined as where v, is the drift velocity of the electrons and E is the electric field in the metal. This parameter is a measure of how freely electrons can travel through a metal when an electric field is applied, such as when the ends of a metal wire are connected to a potential difference. (a) Show that where a is the conductivity of the metal, n is the number density of the charge carriers, and q is the charge on each carrier. (Submit a file with a maximum size of 1 MB.) Choose File no file selected This answer has not been graded yet. (b) B = AVH is often written as AVH - R IB where R, is the Hall coefficient of the metal. Show that the following is true. (Submit a file with a maximum size of 1 MB.) Hyo -n (Choose File no file selected This answer has not been graded yet (c) The table below shows some measured values of Hall coefficients for some elemental materials. What is an average number…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Circuits, Voltage, Resistance, Current - Physics 101 / AP Physics Review with Dianna Cowern; Author: Physics Girl;https://www.youtube.com/watch?v=q8X2gcPVwO0;License: Standard YouTube License, CC-BY