Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 27, Problem 46P
(a)
To determine
The rate of production of internal energy.
(b)
To determine
The rate of production of internal energy.
(c)
To determine
The wire which will be safe.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Question 2. Residential building codes typically require the use of 12-gauge cop-
per wire (diameter 0.205 cm) for wiring receptacles. Such circuits carry currents as
large as 20.0 A. If a wire of smaller diameter (with a higher gauge number) carried
that much current, the wire could rise to a high temperature and cause a fire.
(a) Calculate the rate at which internal energy is produced in 1.00 m of 12-gauge
copper wire carrying 20.0 A.
(b) Repeat the calculation for a 12-gauge aluminum wire.
(c) Explain whether a 12-gauge aluminum wire would be as safe as a copper wire.
B8
Residential building codes typically require the use of 12-gauge copper wire (diameter 0.205 cm) for wiring receptacles. Such circuits carry currents as large as 20.0 A. If a wire of smaller diameter (with a higher gauge number) carried that much current, the wire could rise to a high temperature and
cause a fire. (Table of resistivities)
(a) Calculate the rate at which internal energy is produced in 2.15 m of 12-gauge copper wire carrying a current of 20.0 A.
W
(b) Repeat the calculation for a 12-gauge aluminum wire.
W
Explain whether a 12-gauge aluminum wire would be as safe as a copper wire.
Chapter 27 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Ch. 27.1 - Consider positive and negative charges of equal...Ch. 27.2 - Prob. 27.2QQCh. 27.2 - Prob. 27.3QQCh. 27.4 - When does an incandescent lightbulb carry more...Ch. 27.6 - Prob. 27.5QQCh. 27 - Prob. 1OQCh. 27 - Prob. 2OQCh. 27 - Prob. 3OQCh. 27 - Prob. 4OQCh. 27 - Prob. 5OQ
Ch. 27 - Prob. 6OQCh. 27 - Prob. 7OQCh. 27 - Prob. 8OQCh. 27 - Prob. 9OQCh. 27 - Prob. 10OQCh. 27 - Prob. 11OQCh. 27 - Prob. 12OQCh. 27 - Prob. 13OQCh. 27 - Prob. 1CQCh. 27 - Prob. 2CQCh. 27 - Prob. 3CQCh. 27 - Prob. 4CQCh. 27 - Prob. 5CQCh. 27 - Prob. 6CQCh. 27 - Prob. 7CQCh. 27 - Prob. 8CQCh. 27 - Prob. 1PCh. 27 - A small sphere that carries a charge q is whirled...Ch. 27 - Prob. 3PCh. 27 - Prob. 4PCh. 27 - Prob. 5PCh. 27 - Prob. 6PCh. 27 - Prob. 7PCh. 27 - Prob. 8PCh. 27 - The quantity of charge q (in coulombs) that has...Ch. 27 - Prob. 10PCh. 27 - Prob. 11PCh. 27 - Prob. 12PCh. 27 - Prob. 13PCh. 27 - Prob. 14PCh. 27 - A wire 50.0 m long and 2.00 mm in diameter is...Ch. 27 - A 0.900-V potential difference is maintained...Ch. 27 - Prob. 17PCh. 27 - Prob. 18PCh. 27 - Prob. 19PCh. 27 - Prob. 20PCh. 27 - Prob. 21PCh. 27 - Prob. 22PCh. 27 - Prob. 23PCh. 27 - Prob. 24PCh. 27 - Prob. 25PCh. 27 - Prob. 26PCh. 27 - Prob. 27PCh. 27 - While taking photographs in Death Valley on a day...Ch. 27 - Prob. 29PCh. 27 - Prob. 30PCh. 27 - Prob. 31PCh. 27 - Prob. 32PCh. 27 - Prob. 33PCh. 27 - Prob. 34PCh. 27 - At what temperature will aluminum have a...Ch. 27 - Assume that global lightning on the Earth...Ch. 27 - Prob. 37PCh. 27 - Prob. 38PCh. 27 - Prob. 39PCh. 27 - The potential difference across a resting neuron...Ch. 27 - Prob. 41PCh. 27 - Prob. 42PCh. 27 - Prob. 43PCh. 27 - Prob. 44PCh. 27 - Prob. 45PCh. 27 - Prob. 46PCh. 27 - Prob. 47PCh. 27 - Prob. 48PCh. 27 - Prob. 49PCh. 27 - Prob. 50PCh. 27 - Prob. 51PCh. 27 - Prob. 52PCh. 27 - Prob. 53PCh. 27 - Prob. 54PCh. 27 - Prob. 55PCh. 27 - Prob. 56PCh. 27 - Prob. 57APCh. 27 - Prob. 58APCh. 27 - Prob. 59APCh. 27 - Prob. 60APCh. 27 - Prob. 61APCh. 27 - Prob. 62APCh. 27 - Prob. 63APCh. 27 - Review. An office worker uses an immersion heater...Ch. 27 - Prob. 65APCh. 27 - Prob. 66APCh. 27 - Prob. 67APCh. 27 - Prob. 68APCh. 27 - Prob. 69APCh. 27 - Prob. 70APCh. 27 - Prob. 71APCh. 27 - Prob. 72APCh. 27 - Prob. 73APCh. 27 - Prob. 74APCh. 27 - Prob. 75APCh. 27 - Prob. 76APCh. 27 - Review. A parallel-plate capacitor consists of...Ch. 27 - The dielectric material between the plates of a...Ch. 27 - Prob. 79APCh. 27 - Prob. 80APCh. 27 - Prob. 81APCh. 27 - Prob. 82CPCh. 27 - Prob. 83CPCh. 27 - Material with uniform resistivity is formed into...Ch. 27 - Prob. 85CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An aluminum wire 1.628 mm in diameter (14-gauge) carries a current of 3.00 amps, (a) What is the absolute value of the charge density in the wire? (b) What is the drift velocity of the electrons? (c) What would be the drift velocity if the same gauge copper were used instead of aluminum? The density of copper is 8.96 g/cm3 and thedensity of aluminum is 2.70 g/cm3. The molar mass ofaluminum is 26.98 g/mol and the molar mass of copper is 63.5 g/mol. Assume each atom of metal contributes one free electron.arrow_forwardWhat current flows through a 2.54-cm-diameter rod of Pure silicon that is 20.0 cm long, when 1.00103 V is applied to it? (Such a rod may be used to make nuclear- particle detectors, for example.)arrow_forwardResidential building codes typically require the use of 12-gauge copper wire (diameter 0.205 cm) for wiring receptacles. Such circuits carry currents as large as 20.0 A. If a wire of smaller diameter (with a higher gauge number) carried that much current, the wire could rise to a high temperature and cause a fire. (Table of resistivities) (a) Calculate the rate at which internal energy is produced in 0.850 m of 12-gauge copper wire carrying 20.0 A. W(b) Repeat the calculation for a 12-gauge aluminum wire. W(c) Explain whether a 12-gauge aluminum wire would be as safe as a copper wire.arrow_forward
- Residential building codes typically require the use of 12-gauge copper wire (diameter 0.205 cm) for wiring receptacles. Such circuits carry currents as large as 20.0 A. If a wire of smaller diameter (with a higher gauge number) carried that much current, the wire could rise to a high temperature and cause a fire. (Table of resistivities) (a) Calculate the rate at which internal energy is produced in 1.15 m of 12-gauge copper wire carrying 20.0 A. _______W (b) Repeat the calculation for a 12-gauge aluminum wire. _______Warrow_forwardResidential building codes typically require the use of 12-gauge copper wire (diameter 0.205 cm) for wiring receptacles. Such circuits carry currents as large as 20.0 A. If a wire of smaller diameter (with a higher gauge number) carried that much current, the wire could rise to a high temperature and cause a fire. (Table of resistivities) (a) Calculate the rate at which internal energy is produced in 2.45 m of 12-gauge copper wire carrying a current of 20.0 A. 101.00 If you know the resistance of a wire, how do you calculate the rate at which internal energy is produced for a given current? W (b) Repeat the calculation for a 12-gauge aluminum wire. W Explain whether a 12-gauge aluminum wire would be as safe as a copper wire.arrow_forwardResidential building codes typically require the use of 12-gauge copper wire (diameter 0.205 cm) for wiring receptacles. Such circuits carry currents as large as 20.0 A. If a wire of smaller diameter (with a higher gauge number) carried that much current, the wire could rise to a high temperature and cause a fire. (Table of resistivities) (a) Calculate the rate at which internal energy is produced in 1.75 m of 12-gauge copper wire carrying 20.0 A. W (b) Repeat the calculation for a 12-gauge aluminum wire. W (c) Explain whether a 12-gauge aluminum wire would be as safe as a copper wire.arrow_forward
- Residential building codes typically require the use of 12-gauge copper wire (diameter 0.205 cm) for wiring receptacles. Such circuits carry currents as large as 20.0 A. If a wire of smaller diameter (with a higher gauge number) carried that much current, the wire could rise to a high temperature and cause a fire. (Table of resistivities) (a) Calculate the rate at which internal energy is produced in 1.45 m of 12-gauge copper wire carrying a current of 20.0 A? (in watts)(b) Repeat the calculation for a 12-gauge aluminum wire. (in watts) Explain whether a 12-gauge aluminum wire would be as safe as a copper wire.arrow_forwardResidential building codes typically require the use of 12-gauge copper wire (diameter 0.205 cm) for wiring receptacles. Such circuits carry currents as large as 20.0 A. If a wire of smaller diameter (with a higher gauge number) carried that much current, the wire could rise to a high temperature and cause a fire. (Table of resistivities) (a) Calculate the rate at which internal energy is produced in 1.55 m of 12-gauge copper wire carrying a current of 20.0 A. (b) Repeat the calculation for a 12-gauge aluminum wire. See images for the full question and table of resistivitiesarrow_forwardResidential building codes typically require the use of 12-gauge copper wire (diameter 0.205 cm) for wiring receptacles. Such circuits carry currents as large as 20.0 A. If a wire of smaller diameter (with a higher gauge number) carried that much current, the wire could rise to a high temperature and cause a fire. (Table of resistivities) (a) Calculate the rate at which internal energy is produced in 1.95 m of 12-gauge copper wire carrying a current of 20.0 A. 0.000000040 X If you know the resistance of a wire, how do you calculate the rate at which internal energy is produced for a given current? W (b) Repeat the calculation for a 12-gauge aluminum wire.arrow_forward
- Residential building codes typically require the use of 12-gauge copper wire (diameter 0.205 cm) for wiring receptacles. Such circuits carry currents as large as 20.0 A. If a wir of smaller diameter (with a higher gauge number) carried that much current, the wire could rise to a high temperature and cause fire. (Table of resistivities) (a) Calculate the rate at which internal energy is produced in 1.90 m of 12-gauge copper wire carrying 20.0 A. W (b) Repeat the calculation for a 12-gauge aluminum wire. W (c) Explain whether a 12-gauge aluminum wire would be as safe as a copper wire.arrow_forwardResidential building codes typically require the use of 12- gauge copper wire (diameter 0.205 cm) for wiring receptacles. Such circuits carry currents as large as 20.0 A. If a wire of smaller diameter (with a higher gauge number) carried that much current, the wire could rise to a high temperature and cause a fire. Calculate the rate at which internal energy is produced in 2.00 m of 12- gauge copper wire carrying 20.0 A.arrow_forwardCh. 26arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Ohm's law Explained; Author: ALL ABOUT ELECTRONICS;https://www.youtube.com/watch?v=PV8CMZZKrB4;License: Standard YouTube License, CC-BY