College Physics
1st Edition
ISBN: 9781938168000
Author: Paul Peter Urone, Roger Hinrichs
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 27, Problem 58PE
Assuming the angular resolution found for the Hubble Telescope in Example 27.5, what is the smallest detail that could be observed on the Moon?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Many years ago, a lunar lander was sent to the moon given the base of the lunar lander is roughly 4 m wide and the moon is on average 380 000 km away from Earth, what is the angular size of the lunar lander in Arcsecindsm? how does this compare to the diffraction limited resolution of the Hubble Space Telescope (2.4 m aperture) when observing at the wavelength of 700 nm? can the HST resolve the lander of the moon?
Many years ago, a lunar lander was sent to the moon given the base of the lunar lander is roughly 4 m wide and the moon is on average 380 000 km away from Earth, what is the angular size of the lunar lander in Arcseconds? how does this compare to the diffraction-limited resolution of the Hubble Space Telescope (2.4 m aperture) when observing at the wavelength of 700 nm? can the HST resolve the lander of the moon?
Pluto and its moon Charon are separated by 19600 km. An undergraduate researcher wants to determine if the 5.08 m diameter Mount Palomar telescope can resolve these bodies when they are 5.40×109 km from Earth (neglecting atmospheric effects). Assume an average wavelength of 545 nm.
To determine the answer, calculate the ratio of the telescope's angular resolution ?T to the angular separation ?PC of the celestial bodies.
Chapter 27 Solutions
College Physics
Ch. 27 - What type of experimental evidence indicates that...Ch. 27 - Give an example of a wave characteristic of light...Ch. 27 - How do wave effects depend on the size of the...Ch. 27 - Under what conditions can light be modeled like a...Ch. 27 - Go outside in the sunlight and observe your...Ch. 27 - Why does the wavelength of light decrease when it...Ch. 27 - Does Huygens's principle apply to all types of...Ch. 27 - Young's double slit experiment breaks a single...Ch. 27 - Suppose you use the same double slit to perform...Ch. 27 - Is it possible to create a situation in which...
Ch. 27 - Figure 27.55 shows the central part of the...Ch. 27 - What is the advantage of a diffraction grating...Ch. 27 - What are the advantages of a diffraction grating...Ch. 27 - Can the lines in a diffraction grating be too...Ch. 27 - If a beam of white light passes through a...Ch. 27 - Suppose pure-wavelength light falls on a...Ch. 27 - Suppose a feather appears green but has no green...Ch. 27 - It is possible that there is no minimum in the...Ch. 27 - As the width of the slit producing a single-slit...Ch. 27 - A beam of light always spreads out. Why can a beam...Ch. 27 - What effect does increasing the wedge angle have...Ch. 27 - How is the difference in paths taken by two...Ch. 27 - Is there a phase change in the light reflected...Ch. 27 - In placing a sample on a microscope slide, a glass...Ch. 27 - Answer the above question if the fluid between the...Ch. 27 - While contemplating the food value of a slice of...Ch. 27 - An inventor notices that a soap bubble is dark at...Ch. 27 - A non-reflective coating like the one described in...Ch. 27 - Why is it much more difficult to see interference...Ch. 27 - Under what circumstances is the phase of light...Ch. 27 - Can a sound wave in air be polarized? Explain.Ch. 27 - No light passes through two perfect polarizing...Ch. 27 - Explain what happens to the energy carried by...Ch. 27 - When particles scattering light are smaller than...Ch. 27 - Using the information given in the preceding...Ch. 27 - When light is reflected at Brewster's angle from a...Ch. 27 - Explain how microscopes can use wave optics to...Ch. 27 - A bright white light under water is collimated and...Ch. 27 - Show that when light passes from air to water, its...Ch. 27 - Find the range of visible wavelengths of light in...Ch. 27 - What is the index of refraction of a material for...Ch. 27 - Analysis of an interference effect in a clear...Ch. 27 - What is the ratio of thicknesses of crown glass...Ch. 27 - At what angle is the first-order maximum for...Ch. 27 - Calculate the angle for the third-order maximum of...Ch. 27 - What is the separation between two slits for which...Ch. 27 - Find the distance between two slits that produces...Ch. 27 - Calculate the wavelength of light that has its...Ch. 27 - What is the wavelength of light falling on double...Ch. 27 - At what angle is the fourth-order maximum for the...Ch. 27 - What is the highest-order maximum for 400-nm light...Ch. 27 - Find the largest wavelength of light falling on...Ch. 27 - What is the smallest separation between two slits...Ch. 27 - (a) What is the smallest separation between two...Ch. 27 - (a) If the first-order maximum for pure-wavelength...Ch. 27 - Figure 27.56 shows a double slit located a...Ch. 27 - Using the result of the problem above, calculate...Ch. 27 - Using the result of the problem two problems...Ch. 27 - A diffraction grating has 2000 lines per...Ch. 27 - Find the angle for the third-order maximum for...Ch. 27 - How many lines per centimeter are there on a...Ch. 27 - What is the distance between lines on a...Ch. 27 - Calculate the wavelength of light that has its...Ch. 27 - An electric current through hydrogen gas produces...Ch. 27 - (a) What do the four angles in the above problem...Ch. 27 - What is the maximum number of lines per centimeter...Ch. 27 - The yellow light from a sodium vapor lamp seems to...Ch. 27 - What is the spacing between structures in a...Ch. 27 - Structures on a bird feather act like a reflection...Ch. 27 - An opal such as that shown in Figure 27.17 acts...Ch. 27 - At what angle does a diffraction grating produces...Ch. 27 - Show that a diffraction grating cannot produce a...Ch. 27 - If a diffraction grating produces a first-order...Ch. 27 - (a) Find the maximum number of lines per...Ch. 27 - €37. (a) Show that a 30,000-line-per-centimeter...Ch. 27 - A He—Ne laser beam is reflected from the surface...Ch. 27 - The analysis shown in the figure below also...Ch. 27 - Unreasonable Results Red light of wavelength of...Ch. 27 - Unreasonable Results (a) What visible wavelength...Ch. 27 - Construct Your Own Problem Consider a spectrometer...Ch. 27 - (a) At what angle is the first minimum for 550-nm...Ch. 27 - (a) Calculate the angle at which a 2.00- m -wide...Ch. 27 - (a) How wide is a single slit that produces its...Ch. 27 - (a) What is the width of a single slit that...Ch. 27 - Find the wavelength of light that has its third...Ch. 27 - Calculate the wavelength of light that produces...Ch. 27 - (a) Sodium vapor light averaging 589 nm in...Ch. 27 - (a) Find the angle of the third diffraction...Ch. 27 - (a) Find the angle between the first minima for...Ch. 27 - (a) What is the minimum width of a single slit (in...Ch. 27 - (a) If a single slit produces a first minimum at...Ch. 27 - A double slit produces a diffraction pattern that...Ch. 27 - Integrated Concepts A water break at the entrance...Ch. 27 - Integrated Concepts An aircraft maintenance...Ch. 27 - The 300-m-diameter Arecibo radio telescope...Ch. 27 - Assuming the angular resolution found for the...Ch. 27 - Diffraction spreading for a flashlight is...Ch. 27 - (a) What is the minimum angular spread of a 633-nm...Ch. 27 - A telescope can be used to enlarge the diameter of...Ch. 27 - The limit to the eye's acuity is actually related...Ch. 27 - What is the minimum diameter mirror on a telescope...Ch. 27 - You are told not to shoot until you see the whites...Ch. 27 - (a) The planet Pluto and its Moon Charon are...Ch. 27 - The headlights of a car are 1.3 m apart. What is...Ch. 27 - When dots are placed on a page from a laser...Ch. 27 - Unreasonable Results An amateur astronomer wants...Ch. 27 - Construct Your Own Problem Consider diffraction...Ch. 27 - A soap bubble is 100 nm thick and illuminated by...Ch. 27 - An oil slick on water is 120 nm thick and...Ch. 27 - Calculate the minimum thickness of an oil slick on...Ch. 27 - Find the minimum thickness of a soap bubble that...Ch. 27 - A film of soapy water (n=1.33) on top of a plastic...Ch. 27 - What are the three smallest non-zero thicknesses...Ch. 27 - Suppose you have a lens system that is to be used...Ch. 27 - (a) As a soap bubble thins it becomes dark,...Ch. 27 - A film of oil on water will appear dark when it is...Ch. 27 - Figure 27.34 shows two glass slides illuminated by...Ch. 27 - Figure 27.34 shows two 7.50-cm-long glass slides...Ch. 27 - Repeat Exercise 27.70, but take the light to be...Ch. 27 - Repeat Exercise 27.71, but take the light to be...Ch. 27 - Unreasonable Results To save money on making...Ch. 27 - What angle is needed between the direction of...Ch. 27 - The angle between the axes of two polarizing...Ch. 27 - If you have completely polarized light of...Ch. 27 - What angle would the axis of a polarizing filter...Ch. 27 - At the end of Example 27.8, it was stated that the...Ch. 27 - Show that if you have three polarizing filters,...Ch. 27 - Prove that, if I is the intensity of light...Ch. 27 - At what angle will light reflected from diamond be...Ch. 27 - What is Brewster's angle for light traveling in...Ch. 27 - A scuba diver sees light reflected from the...Ch. 27 - At what angle is light inside crown glass...Ch. 27 - Light reflected at 55.6° from a window is...Ch. 27 - (a) Light reflected at 62.5° from a gemstone in a...Ch. 27 - If b is Brewster's angle for light reflected from...Ch. 27 - Integrated Concepts If a polarizing filter reduces...Ch. 27 - Integrated Concepts Suppose you put on two pairs...Ch. 27 - Integrated Concepts (a) On a day when the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
41. (II) A ball player catches a ball 3.4 s after throwing it vertically upward. With what speed did hi throw i...
Physics: Principles with Applications
The electromagnetic spectrum of light is often arranged in terms of frequency. Which one of the following has t...
Lecture- Tutorials for Introductory Astronomy
1. If an object is not moving, does that mean that there are no forces acting on it? Explain.
College Physics: A Strategic Approach (4th Edition)
Draw and label a free-body diagram for system C at a time following the release of the blocks. Indicate separat...
Tutorials in Introductory Physics
The proton is a composite particle composed of three quarks, all of which are either up quarks (u; charge +23e)...
Essential University Physics: Volume 2 (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The angular resolution of a radio telescope is to be 0.100 when the incident waves have a wavelength of 3.00 mm. What minimum diameter is required for the telescopes receiving dish?arrow_forwardHow far apart must two objects be on the moon to be resolvable by the 8.1-m-diameter Gemini North telescope at Mauna Kea, Hawaii, if only the diffraction effects of the telescope aperture limit the resolution? Assume 550 nm for the wavelength of light and 400,000 km for the distance to the moon.arrow_forwardWhat diameter telescope (in m) would you need to observe Olympus Mons (624 km in diameter) from Earth at a wavelength of 550 nm when Mars is 3.35 ✕ 108 km away?arrow_forward
- Your telescope has a diameter of D = 0.934 m. You use it to look at craters on the moon, which is L = 3.84e8 m away. Assuming you're observing with a wavelength of λ = 627 nm, what is the size (y) of the smallest crater you can resolve?arrow_forwardCalculate the limit of resolution of a telescope objective having a diameter of 200 cm, if it has to detect light of wavelength 500 nm coming from a star.. (a) 610 x 10⁹ rad -9 (b) 305 x 10⁹ rad ma (c) 457.5 x 109 rad (d) 152.5 x 10⁹ radarrow_forwardThe Atacama Large Millimeter/SubmillimeterArray (ALMA) is designed to operate over the wavelength range λ= 0.3→9.6mm. It will consist of 80 independent 12m telescopes with a maximum baseline of 18km. How large would a single-dish antenna have to be to have the same collecting area as ALMA?arrow_forward
- An amateur astronomer wants to build a telescope with adiffraction limit that will allow him to see if there are people onthe moons of Jupiter.(a) What diameter mirror is needed to be able to see 1.00 mdetail on a Jovian Moon at a distance of 7.50×108km fromEarth? The wavelength of light averages 600 nm.(b) What is unreasonable about this result?(c) Which assumptions are unreasonable or inconsistent?arrow_forwardAssume that a spy satellite in orbit carries a telescope that can resolve objects on the ground as small as the width of a car’s license plate. If the satellite is in orbit at 400 kmkm above the earth’s surface (which is typical for orbiting telescopes) and it focuses light of wavelength 500 nmnm , what minimum diameter of the mirror (or objective lens) would be needed (Take the width of a typical license plate to be about 30 cmcm )? Express your answer in centimeters.arrow_forwardA new optical imaging satellite is being designed for the Maritime Domain Awareness mission. The satellite will be placed in a circular orbit at 5000 km altitude and be able to look off of nadir, giving a maximum range to the target of 7000 km. The desired resolution is 3 meters. Assuming the sensor will operate in the SWIR (λ = 1.5 μm), estimate the required diameter of the primary aperture to achieve the desired resolution at the maximum range. Report answer in meters to two significant digits. The required aperture diameter is _____ meters.arrow_forward
- The nearest neighboring star to the Sun is about 4 lightyears away. If a planet happened to be orbiting this star atan orbital radius equal to that of the Earth–Sun distance,what minimum diameter would an Earth-based telescope’saperture have to be in order to obtain an image that resolvedthis star–planet system? Assume the light emitted by thestar and planet has a wavelength of 550 nm.arrow_forwardPluto and its moon Nix are separated by 48700 km. An undergraduate researcher wants to determine if the 5.08 m diameter Mount Palomar telescope can resolve these bodies when they are 6.40×10^9 km from Earth (neglecting atmospheric effects). Assume an average wavelength of 565 nm. To determine the answer, calculate the ratio of the telescope's angular resolution θT to the angular separation θPN of the celestial bodies.arrow_forwardThe Very Large Array (VLA) is a set of 27 radio telescope dishes in Catron and Socorro counties, New Mexico (as shown). The antennas can be moved apart on railroad tracks, and their combined signals give the resolvingpower of a synthetic aperture 36.0 km in diameter. (a) If the detectors are tuned to a frequency of 1.40 GHz, what is the angular resolution of the VLA? (b) Clouds of interstellar hydrogen radiate at the frequency used in part (a). What must be the separation distance of two clouds at the center of the galaxy, 26 000 light-years away, if they are to be resolved? (c) What If? As the telescope looks up, a circling hawk looks down. Assume the hawk is most sensitive to green light having a wavelength of 500 nm and has apupil of diameter 12.0 mm. Find the angular resolution of the hawk’s eye. (d) A mouse is on the ground 30.0 m below. By what distance must the mouse’s whiskers be separated if the hawk can resolve them?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY