Universe: Stars And Galaxies
Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 27, Problem 21Q
To determine

(a)

The most suitable candidates for having Earthlike planets on which the intelligent civilizations have evolved.

To determine

(b)

The nearest star listed in appendix 4.

Blurred answer
Students have asked these similar questions
In a globular cluster, astronomers (someday) discover a star with the same mass as our Sun, but consisting entirely of hydrogen and helium. Is this star a good place to point our SETI antennas and search for radio signals from an advanced civilization? Group of answer choices   No, because such a star (and any planets around it) would not have the heavier elements (carbon, nitrogen, oxygen, etc.) that we believe are necessary to start life as we know it.   Yes, because globular clusters are among the closest star clusters to us, so that they would be easy to search for radio signals.   Yes, because we have already found radio signals from another civilization living near a star in a globular cluster.   No, because such a star would most likely not have a stable (main-sequence) stage that is long enough for a technological civilization to develop.   Yes, because such a star is probably old and a technological civilization will have had a long time to evolve and develop there.
Most of the stars we can see with the unaided eye in our night sky are hundreds or even thousands of lightyears away from Earth. (The very closest ones are only a few dozen lightyears away, but most are much further.) The vast majority of stars in our galaxy are many tens of thousands of lightyears away. IF intelligent life existed on planets orbiting some of these stars – and that’s a huge IF! – comment on the likelihood and practicality of (a) visiting, (b) communicating with, or (c) verifying the existence of those life forms. Describe how you might go about approaching EACH of these three tasks, or if you think they are even possible. (One or two sentences for each part would be appropriate.)
Tutorial A radio broadcast left Earth in 1923. How far in light years has it traveled? If there is, on average, 1 star system per 400 cubic light years, how many star systems has this broadcast reached? Assume that the fraction of these star systems that have planets is 0.50 and that, in a given planetary system, the average number of planets that have orbited in the habitable zone for 4 billion years is 0.40. How many possible planets with life could have heard this signal? Part 1 of 3 To figure out how many light years a signal has traveled we need to know how long since the signal left Earth. If the signal left in 1923, distance in light years = time since broadcast left Earth. d = tnow - broadcast d = 97 97 light years Part 2 of 3 Since the radio signal travels in all directions, it expanded as a sphere with a radius equal to the distance it has traveled so far. To determine the number of star systems this signal has reached, we need to determine the volume of that sphere. V, = Vb…
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Text book image
The Solar System
Physics
ISBN:9781305804562
Author:Seeds
Publisher:Cengage
Text book image
The Solar System
Physics
ISBN:9781337672252
Author:The Solar System
Publisher:Cengage
Text book image
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Text book image
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY