Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 27, Problem 20Q
To determine
(a)
The average lifetime of a technological civilization.
To determine
(b)
The consequence if there are
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The Drake equation In 1961 astronomer Frank Drakedeveloped an equation to try to estimate the number ofextraterrestrial civilizations in our galaxy that might be
able to communicate with us via radio transmissions. Nowlargely accepted by the scientific community, the Drakeequation has helped spur efforts by radio astronomers tosearch for extraterrestrial intelligence. Here is the equation:
NC = N # fp # ne # fl# fi# fc # fLOK, it looks a little messy, but here’s what it means:So, how many ETs are out there? That depends; valueschosen for the many factors in the equation depend onever-evolving scientific knowledge and one’s personalguesses. But now, some questions.a) What quantity is calculated by the first product, N # fp?b) What quantity is calculated by the product, N # fp # ne # fl?c) What probability is calculated by the product fl# fi?d) Which of the factors in the formula are conditionalprobabilities? Restate each in a way that makes thecondition clear.
The Drake equation attempts to calculate the number of communicative civilizations in the galaxy. What does the factor F S represent and why is it considered to be the most uncertain of all the factors in this equation?
The Drake equation tells us that the number of technological civilizations in our Galaxy at this time is:
Group of answer choices
About 100,000.
About 14 billion.
About 200 billion.
It cannot predict this number at this time.
About 6,000.
About 1 million.
Somewhere in the range 1-10.
Chapter 27 Solutions
Universe: Stars And Galaxies
Ch. 27 - Prob. 1QCh. 27 - Prob. 2QCh. 27 - Prob. 3QCh. 27 - Prob. 4QCh. 27 - Prob. 5QCh. 27 - Prob. 6QCh. 27 - Prob. 7QCh. 27 - Prob. 8QCh. 27 - Prob. 9QCh. 27 - Prob. 10Q
Ch. 27 - Prob. 11QCh. 27 - Prob. 12QCh. 27 - Prob. 13QCh. 27 - Prob. 14QCh. 27 - Prob. 15QCh. 27 - Prob. 16QCh. 27 - Prob. 17QCh. 27 - Prob. 18QCh. 27 - Prob. 19QCh. 27 - Prob. 20QCh. 27 - Prob. 21QCh. 27 - Prob. 22QCh. 27 - Prob. 23QCh. 27 - Prob. 24QCh. 27 - Prob. 25QCh. 27 - Prob. 26QCh. 27 - Prob. 27QCh. 27 - Prob. 28QCh. 27 - Prob. 29QCh. 27 - Prob. 30QCh. 27 - Prob. 31QCh. 27 - Prob. 32QCh. 27 - Prob. 33Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the difference between chemical evolution and biological evolution?arrow_forwardConsider Figure 25-8. What is the ratio of the length of time since the origin of fish to the time since the origin of mammals? What does this value indicate?arrow_forwardSuppose a human generation is defined as the average time from birth to childbearing, which is about 20 years long. How many generations have passed in the 200,000 years during which anatomically modern humans have existed?arrow_forward
- What are the advantages to using radio waves for communication between civilizations that live around different stars? List as many as you can.arrow_forwardasap pleasearrow_forwardA radio broadcast left Earth in 1911. How far in light years has it traveled? If there is, on average, 1 star system per 400 cubic light years, how many star systems has this broadcast reached? Assume that the fraction of these star systems that have planets is 0.50 and that, in a given planetary system, the average number of planets that have orbited in the habitable zone for 4 billion years is 0.20. How many possible planets with life could have heard this signal?arrow_forward
- Suppose there are 9000.0 civilizations broadcasting radio signals in the Milky Way Galaxy at the moment. On average, how many stars would have to be searched before a signal is heard? Assume that there are 8 × 1011 stars in the Galaxy and one civilization per star.arrow_forwardTutorial A radio broadcast left Earth in 1923. How far in light years has it traveled? If there is, on average, 1 star system per 400 cubic light years, how many star systems has this broadcast reached? Assume that the fraction of these star systems that have planets is 0.50 and that, in a given planetary system, the average number of planets that have orbited in the habitable zone for 4 billion years is 0.40. How many possible planets with life could have heard this signal? Part 1 of 3 To figure out how many light years a signal has traveled we need to know how long since the signal left Earth. If the signal left in 1923, distance in light years = time since broadcast left Earth. d = tnow - broadcast d = 97 97 light years Part 2 of 3 Since the radio signal travels in all directions, it expanded as a sphere with a radius equal to the distance it has traveled so far. To determine the number of star systems this signal has reached, we need to determine the volume of that sphere. V, = Vb…arrow_forwardTutorial A radio broadcast left Earth in 1925. How far in light years has it traveled? If there is, on average, 1 star system per 400 cubic light years, how many star systems has this broadcast reached? Assume that the fraction of these star systems that have planets is 0.30 and that, in a given planetary system, the average number of planets that have orbited in the habitable zone for 4 billion years is 0.85. How many possible planets with life could have heard this signal? Part 1 of 3 To figure out how many light years a signal has traveled we need to know how long since the signal left Earth. If the signal left in 1925, distance in light years = time since broadcast left Earth. d = tnow - tbroadcast d = light years Submit Skip (you cannot come back)arrow_forward
- I don’t understand how that it was estimated as length of a mouse is 4 to 15 cm in length. Is that a guess and the answer just varies?also where did 10^-1 come fromarrow_forwardMost of the stars we can see with the unaided eye in our night sky are hundreds or even thousands of lightyears away from Earth. (The very closest ones are only a few dozen lightyears away, but most are much further.) The vast majority of stars in our galaxy are many tens of thousands of lightyears away. IF intelligent life existed on planets orbiting some of these stars – and that’s a huge IF! – comment on the likelihood and practicality of (a) visiting, (b) communicating with, or (c) verifying the existence of those life forms. Describe how you might go about approaching EACH of these three tasks, or if you think they are even possible. (One or two sentences for each part would be appropriate.)arrow_forwardThe evidence is overwhelming that the Grand Canyon was dug over a span of millions of years by the erosive power of the Colorado River and that river's tributary streams. Does this evidence support a catastrophic theory or an evolutionary theory?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY