Concept explainers
(a)
The speed of earth in its orbit.
Answer to Problem 26Q
The speed of earth in its axis is
Explanation of Solution
Given:
The radius of Earth orbit is,
Formula Used:
The expression of speed of earth in its axis is given by,
Calculation:
The speed of earth in its axis is calculated as,
Conclusion:
The speed of earth in its axis is
(b)
The wavelength of transmission which Earth receives.
Answer to Problem 26Q
The wavelength of transmission which Earth receives is
Explanation of Solution
Given:
The frequency is
Formula Used:
The expression of wavelength is given by,
Calculation:
The wavelength is calculated as,
Conclusion:
The wavelength of transmission which Earth receives is
(c)
The shift in wavelength using Doppler Effect.
Answer to Problem 26Q
The shift in wavelength is
Explanation of Solution
Formula Used:
The expression of shift in wavelength is given by,
The expression of percent shift in wavelength is given by,
Calculation:
The shift in wavelength is calculated as,
The percent shift in wavelength is calculated as,
Conclusion:
The shift in wavelength is
(d)
The importance that SETI radio receivers be able to measure frequency and wavelength to very high precision.
Explanation of Solution
Introduction:
SETI pioneer Bernard Oliver was the first one who draws attention to a range of relatively noise-free frequency in the neighbor-hood of the microwave emission lines of hydrogen and hydroxide.
It is essential to track all the frequency and wavelength sent by civilization in another planetary system. So, there is a requirement of high precision technology to detect that frequency to communicate with them.
Conclusion:
Therefore, there is a requirement of a high precision radio receiver which able to measure frequency and wavelength.
Want to see more full solutions like this?
Chapter 27 Solutions
Universe: Stars And Galaxies
- When Mars is 90 million km (9 x 10^10 m) from Earth, a) How long would it take for a radio wave from a video camera mounted on the back of a Mars Rover to tell ground control on earth that the Rover is about to go over a cliff? b) How long would it take for a radio signal from Earth to reach the Rover saying "STOP". c) Why do our Mars Rovers have to be "intelligent" enough to figure out how to deal with obstacles themselves?arrow_forwardYou decide to go on an interstellar mission to explore some of the newly discovered extrasolar planets orbiting the star ROTOR. Your spacecraft arrives in the new system, in which there are five planets. ROTOR is identical to the Sun (in terms of its size, mass, age and composition). From your observations of these planets, you collect the following data: Density Average Distance from star (AU] Planet Mass Radius Albedo Temp. [C] Surf. Press. MOI Rotation [Earth = 1] (Earth = 1] [g/cm³] [Atm.] Period (Hours] Factor SIEVER EUGENIA 4.0 0.001 2.0 0.1 5.0 1.0 0.3 20 0.8 N/A 3.0 0.2 N/A 0.3 0.4 0.35 20 10 500 1000 5.0 4.0 0.5 0.8 0.4 0.7 -50 MARLENE CRILE 1.0 1.0 3.0 8.0 1,5 0.0 0.50 0.50 0.25 150 0.4 JANUS 100 12 0.1 10 -80 0.2 200 Figure 1: А Rotor 850 890 900 Wavelength (nm) A Sun В C 860 900 910 Wavelength (nm) 2414 a asarrow_forwardWe think the terrestrial planets formed around solid “seeds” that later grew over time through the accretion of rocks and metals. a) Suppose the Earth grew to its present size in 1 million years through the accretion of particles averaging 100 grams each. On average, how many particles did the Earth capture per second, given that the mass of the Earth is = 5.972 × 10 ^24 kg ? b) If you stood on Earth during its formation and watched a region covering 100 m^2, how many impacts would you expect to see in one hour. Use the impact rate you calculated in part a. You’ll need the following as well: the radius of the Earth is = 6.371 × 10 ^6 m and the surface area of the Earth is 4??^2Eartharrow_forward
- Please help me with this question. A=.2arrow_forwardIn this experiment, as a form of sheltering-at-home fantasy, we adopt a science=fiction scenario. It’s the year 2520 and you are an astronaut working for a private entity simply called The Company. The CEO of The Company is the 8th clone of Elon Musk. Elon 9 has provided you with a small interstellar spacecraft about a million times faster than anything we can conceive of today. It is your job to check out the potential habitability of a few relatively near potentially habitable planets to see if human colonies can be established there to mine materials for the latest version of the Tesla automobile. But there is a problem. Shortly before your launch, a solar-system-wide pandemic ground human economy to a standstill. So Elon 9 had to cut corners. The only device he could afford for you to measure gravity acceleration on the subject planets is a pendulum with a length of 100 cm. After landing, you will determine the gravitational acceleration at the surface of…arrow_forwardSince 1995, hundreds of extrasolar planets have been discovered. There is the exciting possibility that there is life on one or more of these planets. To support life similar to that on the Earth, the planet must have liquid water. For an Earth-like planet orbiting a star like the Sun, this requirement means that the planet must be within a habitable zone of 0.9 AU to 1.4 AU from the star. The semimajor axis of an extrasolar planet is inferred from its period. What range in periods corresponds to the habitable zone for an Earth-like Planet orbiting a Sun-like star?arrow_forward
- For which of the following reasons (select all that apply), is it useful/important to send rovers to other planetary bodies in our solar system? O a. The engineering innovations developed to produce successful/viable rovers and landers on other planets can help lead to developments in the technology used here on Earth that may have taken far more time to develop without the limitations provided by space travel to foreign worlds. O b. The data collected can help improve our understanding of the evolution/development of our solar system. O. Rovers/landers can be outfitted with various tools and equipment that can be used to inform of us of the geological histories of each of the planets they visit. O d. More direct probes of the planetary surface are possible to detect signs of the building blocks of life. O e. Rock samples can be used to calibrate our estimations of the age of the solar system.arrow_forwardCalculate how long radio communications from the spacecraft will take when it encounters Mars. The furthest distance from Earth to Mars is 2.66 AU. Remember that 1 AU = 1.5 x 1011 m and that light travels at 3 x 108 m/s. So how long will the radio messages take to travel this greatest distance of 2.66 AU? If two way communication between the Earth and the spacecraft involve a 1 s time lapse before an acknowledging signal is sent by the spacecraft, how long a time is there between sending a command to the spacecraft and receiving a reply?arrow_forwardasap pleasearrow_forward
- There is one part to this question. I need to know the cm. Thank you!arrow_forwardPlease answer the question and subquestions completely! This is one whole question which has subquestions! According to the official Bartleby guidelines, each question can have up to two subquestions! Thank you! 1) A missile is launched upward with a speed that is half the escape speed. What height (in radii of Earth) will it reach? R/4 R/3 R/2 R 2R A) The weight of a 0.60 kg object at the surface of Planet V is 20 N. The radius of the planet is 4 x 10 6 m. Find the gravitational acceleration at a distance of 2 x 10 6 m from the surface of this planet. 8.9 m/s2 11 m/s2 13 m/s2 18 m/s2 B) Two masses are precisely 1 m apart from each other. The gravitational force each exerts on the other is exactly 1 N. If the masses are identical, what is each mass? 1.22 x 105 kg 1.34 x 1010 kg 2.50 x 105 kg 1.58 x 1010 kgarrow_forwardThis is a preliminary version of the Mars Project - to think about the time it takes to complete a Mars mission. Consider the following simplified Earth to Mars transfer: • Departs Earth • Enter Mars orbit • Orbit Mars orbit for some time • Exit Mars orbit to return • Enter Earth orbit a. What is the flight time, in days, from Earth to Mars? What is the return flight time? [Answer: 258.83 days] b. Where does Mars need to be (outbound) to reach it at the end of the Hohmann transfer (tip: 180° "later"). [Answer: 44.329°] c. To return to Earth with a Hohmann transfer, the opposite will need to be true: Earth must be at a specific angle at the time of departure from Mars for the spacecraft to reach Earth's orbit when Earth is there. What is that angle? [Answer: -75.097°] d. When is the first opportunity to return to Earth for that optimal Hohmann transfer? [Answer: 454.70 days] e. What is the total round trip time to Mars for this ideal Hohmann transfer?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax