Concept explainers
(a)
To predict: The amino acid sequences of peptides formed by ribosomes in response to the given
Introduction:
The biosynthesis of protein is done with the help of messenger RNA (mRNA). The proteins are encoded by the genetic codons. The ribosomes are present in biological decoding machinery. These ribosomes link specific amino acids in a sequence which is specified by codons.
(a)

Explanation of Solution
Explanation:
The amino acids specify by
GGU CAG UCG CUC CUG AUU
Gly–Gln–Ser–Leu–Leu–Ile
Here, the codon GGU specifies the glycine amino acid, CAG specifies glutamine, UCG specifies serine, CUC and CUG both specify amino acid leucine. The amino acid Isoleucine is specified by the codon AUU. Thus, the amino acids which specify the mRNA sequence are glycine, glutamine, leucine, serine and isoleucine.
(b)
To determine: The amino acid sequences of peptides formed by ribosomes in response to the given
Introduction:
Biological decoding machinery consists of the ribosomes. The similar types of genetic codes are present in all living organisms. The total numbers of codons present in individuals are 64 in number which includes the 20 amino acids
(b)

Explanation of Solution
Explanation:
The amino acids specified by the mRNA sequences are as follow:
UUG GAU GCG CCA UAA UUU GCU
Leu – Asp – Ala – Pro – stop (UAA is a stop codon)
The codon UUG specifies theleucine amino acid, GAU specifies aspartic acid, GCG specifies alanine, CCA specify amino acid proline and UAA act stop codon which also stops the further protein synthesis. Thus, the amino acids which are specified by codons are leucine, aspartic acid, alanine and proline. The codon UAA is the stop codon which stops the synthesis of protein.
(c)
To determine: The amino acid sequences of peptides formed by ribosomes in response to the given mRNA sequences CAUGAUGCCUGUUGCUAC.
Introduction:
There are some amino acids which are encoded by more than one codon. All the living organisms consist of similar type of genetic codes. The proteins are synthesized by the genetic codons.
(c)

Explanation of Solution
Explanation:
The amino acids specify by mRNA sequences are as follow:
CAU GAU GCC UGU UGC UAC
His–Asp–Ala–Cys–Cys–Tyr
The codon CAU specifies the histidine amino acid, GAU specifies aspartic acid, GCC specifies alanine, both UGC codons specify amino acid cysteine and UAC specifies tyrosine. Thus, the mRNA sequence specifies the amino acid histidine, aspartic acid, alanine, cysteine and tyrosine.
(d)
To determine: The amino acid sequences of peptides formed by ribosomes in response to the given mRNA sequences AUG GAC GAA..
Introduction:
These ribosomes link specific amino acids in a sequence which is specified by codons. Individuals consists of total numbers of 64 codons are which includes the 20 amino acids. This is because there are some amino acids which are coded by more than one codon.
(d)

Explanation of Solution
Explanation:
The amino acids specify by mRNA sequences are as follow:
AUG GAC GAA
Met–Asp–Glu in eukaryotes and fMet–Asp–Glu in prokaryotes
AUG specifies the methionine amino acid, GAC specifies aspartic acid, GAA specifies glutamate. In prokaryotes, AUG specifies methyl methionine. Thus, the amino acids methionine, aspartic acid and glutamate are coded by the codons present in mRNA sequence.
Want to see more full solutions like this?
Chapter 27 Solutions
SAPLINGPLUS FOR PRINCIPLES OF BIOCHEMIS
- B- Vitamins are converted readily into important metabolic cofactors. Deficiency in any one of them has serious side effects. a. The disease beriberi results from a vitamin B 1 (Thiamine) deficiency and is characterized by cardiac and neurological symptoms. One key diagnostic for this disease is an increased level of pyruvate and α-ketoglutarate in the bloodstream. How does this vitamin deficiency lead to increased serumlevels of these factors? b. What would you expect the effect on the TCA intermediates for a patient suffering from vitamin B 5 deficiency? c. What would you expect the effect on the TCA intermediates for a patientsuffering from vitamin B 2 /B 3 deficiency?arrow_forwardPyruvate is accepted into the TCA cycle by a “feeder” reaction using the pyruvate dehydrogenase complex, resulting in acetyl-CoA and CO2. Provide a full mechanism for this reaction utilizing the TPP cofactor. Include the roles of all cofactors.arrow_forwardMap out all of the metabolic pathways in the liver cell. Draw out the structures and names of all compounds neatly by hand and the pathways responsible for metabolizing them. Some examples are: Glycolysis/gluconeogenesis, PPP, Glycogenesis/glycogenolysis, Krebs, ETC, selectamino acid pathways (Ala, Glu, Asp) Lipogenesis/lipolysis. Citrate/MAS/glycerol phosphate shuttlesystems, and the Cori/Glc-Ala cycles. Rules:-Draw both a mitochondrial area of metabolism and a cytoplasmic area of metabolism.-Draw the liver and its roles in glucose recycling (Cori cycle/Glc-Alanine recycling)-Avoid drawing the same molecule twice (except for separate mitochondrial/cytoplasmic populations. i.e. Design the PPP/Glycolysis so that GAP is only drawn once)-Label Carbon 4 of glucose and highlight where you would expect to find it in EVERY compound in whichit is present.-Have one or two locations for NADH/NADPH/ATP/GTP/CoQH2 – many arrows will come to/from thesespots.arrow_forward
- a. Draw the Krebs Cycle and show the entry points for the amino acids Alanine,Glutamic Acid, Asparagine, and Valine into the Krebs Cycle. (Include name of Enzymes involved) b. How many rounds of Krebs will be required to waste all Carbons of Glutamic Acid as CO2? (Show by drawing out the mechanism that occurs)arrow_forwardThe malate-aspartate shuttle allows malate to be exchanged for aspartate acrossthe inner mitochondrial membrane. (a) Describe the role of the malate-aspartate shuttle in liver cells under HIGHblood glucose conditions. Be sure to explain your answer. (b) Describe the role of the malate-aspartate shuttle in liver cells under LOW blood + glucose conditions.arrow_forward(a) Write out the net reaction, calculate ∆E ̊' for the reaction, and calculate the standard free-energy change (∆G°') for the overall oxidation/reduction reaction. (h) How many moles of ATP could theoretically be generated per mole of FADH2 oxidized by this reaction, given a ∆G ̊' of ATP synthesis of + 31 kJ/mol? How many moles of ATP could be generated per mole of FADH2 oxidized by this reaction under more typical cellular conditions (where ∆G' of ATP hydrolysis is ~ -50 kJ/mol)? Be sure to show your work and explain your answer.arrow_forward
- Indicate for the reactions below which type of enzyme and cofactor(s) (if any) would be required to catalyze each reaction shown. 1) Fru-6-P + Ery-4-P <--> GAP + Sed-7-P2) Fru-6-P + Pi <--> Fru-1,6-BP + H2O3) GTP + ADP <--> GDP + ATP4) Sed-7-P + GAP <--> Rib-5-P + Xyl-5-P5) Oxaloacetate + GTP ---> PEP + GDP + CO26) DHAP + Ery-4-P <--> Sed-1,7-BP + H2O7) Pyruvate + ATP + HCO3- ---> Oxaloacetate + ADP + Piarrow_forwardThe phosphate translocase is an inner mitochondrial membrane symporter that transports H2PO4- and H+ into the mitochondrial matrix. Phosphate is a substrate for Complex V (the ATP Synthase), the enzyme that couples the synthesis of ATP to the H+ gradient formed by the electron transport chain. (a) Bongotoxin is a hypothetical compound that inhibits the phosphate translocase of the inner mitochondrial membrane. Explain why electron transport from NADH to O2 stops when bongotoxin is added to mitochondria (i.e., why do electrons stop flowing through the electron transport chain even with an abundance of NADH and O 2 present). What effect will the addition of the weak acid dinitrophenol (DNP) to the cytosol have on electron transport in bongotoxin-inhibited mitochondria? Be sure to explain your answers. (b) How much free energy is released (in kJ) when one mole of protons flows from the mitochondrial inner membrane space (IMS) to the mitochondrial matrix when the [H+ ] in the IMS is 7.9 x…arrow_forwardWhen TMPD/ascorbate is added to mitochondria as a source of electrons (TMPD/ascorbate reduce cytochrome c directly) oxygen is reduced to H2O by the electron transport chain (ETC).(a) Approximately how many ATPs would result per O2 consumed when electrons come from TMPD/ascorbate? (b) If dinitrophenol (DNP) is added to the mitochondria in (a) above, what effect would DNP have on the yield of ATPs per O2 reduced from TMPD/ascorbate electrons?arrow_forward
- Sodium fluoroacetate (FCH2CO2Na) is a very toxic molecule that is used as rodent poison. It is converted enzymatically to fluoroacetyl-CoA and is utilized by citrate synthase to generate (2R,3S)-fluorocitrate. The release of this product is a potent inhibitor of the next enzyme in the TCA cycle. Show the mechanism for the production of fluorocitrate and explain how the molecule acts as a competitive inhibitor. Predict the effect on the concentrations of TCA intermediates.arrow_forwardIn three separate experiments, pyruvate labeled with 13C at C-1, C-2, or C-3 is introduced to cells undergoing active metabolism. Trace the fate of each carbon through the TCA cycle and show when each of these carbons produces 13CO2. Glucose is similarly labeled at C-2 with 13C. During which reaction will this labeled carbon be released as 13CO2?arrow_forwardPlease draw this out and show how they react with electron flow! TPP is also utilized in transketolase reactions in the PPP. Give a mechanism for the TPP-dependent reaction between Xylulose-5-phosphate and Ribose-5-Phosphate to yield the products of Glyceraldehyde-3-phosphate and Sedoheptulose-7-Phosphate.arrow_forward
- BiochemistryBiochemistryISBN:9781319114671Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.Publisher:W. H. FreemanLehninger Principles of BiochemistryBiochemistryISBN:9781464126116Author:David L. Nelson, Michael M. CoxPublisher:W. H. FreemanFundamentals of Biochemistry: Life at the Molecul...BiochemistryISBN:9781118918401Author:Donald Voet, Judith G. Voet, Charlotte W. PrattPublisher:WILEY
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningFundamentals of General, Organic, and Biological ...BiochemistryISBN:9780134015187Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. PetersonPublisher:PEARSON





