(a)
Interpretation:
The conversion of rate of energy expenditure from
Concept introduction:
The set of complex compounds which are responsible for migration of the electrons from the electron donors to the acceptors of the electrons with help of the

Answer to Problem 17P
The conversion of rate of energy expenditure from
Explanation of Solution
The given rate of energy expenditure corresponding to a
The conversion of watt into kilojoules per second is done below.
So, the value of rate of energy expenditure in kilojoules per second becomes
The conversion of watt into kilocalories per second is done below.
So, the value of rate of energy expenditure in kilocalories per second becomes
Therefore, the value of rate of energy expenditure, that is
(b)
Interpretation:
The total number of electrons which flows through the mitochondrial electron-transport chain per second under the mentioned conditions is to be stated.
Concept introduction:
The set of complex compounds which are responsible for migration of the electrons from the electron donors to the acceptors of the electrons with help of the redox reactions is known as electron transport chain. This electron transport chain also helps in the coupling of transferred electrons with protons transfer inside and outside the cell membrane.

Answer to Problem 17P
The total number of electrons which flows through the mitochondrial electron-transport chain per second under the mentioned conditions is
Explanation of Solution
The given rate of energy expenditure corresponding to a
According to the unit concept, one watt equals to one ampere as watt is used for the measurement of current flow. The half-reactions that takes place during the mitochondrial electron-transport chain is given below.
So, the total potential difference of the two half-reactions is
The relation between watt
Substitute the value of watt and volt in the above expression.
As
Therefore, the total number of electrons which flows through the mitochondrial electron-transport chain per second is
(c)
Interpretation:
The corresponding rate of ATP production is to be stated.
Concept introduction:
The molecule which helps in the migration of energy produced during the breakdown of food to the other processes of cells is known adenosine triphosphate or ATP molecule. ATP contains adenine as nitrogenous base, a ribose sugar and three phosphate groups.

Answer to Problem 17P
The corresponding rate of ATP production is
Explanation of Solution
The given rate of energy expenditure corresponding to a
The relation between the total numbers of electrons moving through electron transport chain and the total number of ATP molecules produced is that
Thus, the total number of ATP molecules produced by
The molar concentration of ATP molecules is calculated by the expression given below.
Substitute number of molecules and Avogadro’s number in above formula.
Therefore, the corresponding rate of ATP production is
(d)
Interpretation:
The total time in which an ATP molecule turns over in a person at rest is to be stated.
Concept introduction:
The molecule which helps in the migration of energy produced during the breakdown of food to the other processes of cells is known adenosine triphosphate or ATP molecule. ATP contains adenine as nitrogenous base, a ribose sugar and three phosphate groups.

Answer to Problem 17P
The total time in which an ATP molecule turns over in a person at rest is
Explanation of Solution
The total given ATP content of the body is
The rate of ATP production is
The molar mass of ATP is
The mass of ATP is calculated by the expression given below.
Substitute the value of moles and molar mass of TAP in the above expression.
The conversion of
Therefore, the mass of ATP becomes,
The total time for ATP turn over is calculated by dividing the given mass of TAP content in body with
Therefore, the total time in which an ATP molecule turns over in a person at rest is
Want to see more full solutions like this?
Chapter 27 Solutions
BIOCHEMISTRY
- what is a protein that contains a b-sheet and how does the secondary structure contributes to the overall function of the protein.arrow_forwarddraw and annotate a b-sheet and lable the hydrogen bonding. what is an example that contains the b-sheet and how the secondary structure contributes to the overall function of your example protein.arrow_forwardFour distinct classes of interactions (inter and intramolecular forces) contribute to a protein's tertiary and quaternary structures. Name the interaction then describe the amino acids that can form this type of interaction. Draw and annotate a diagram of the interaction between two amino acids.arrow_forward
- Examine the metabolic pathway. The enzymes that catalyze each step are identified as "e" with a numeric subscript. e₁ e3 e4 A B с 1° B' 02 e5 e6 e7 E F Which enzymes catalyze irreversible reactions? ப e ez ☐ ez e4 ☐ ப es 26 5 e7 Which of the enzymes is likely to be the allosteric enzyme that controls the synthesis of G? €2 ез e4 es 26 5 e7arrow_forwardAn allosteric enzyme that follows the concerted model has an allosteric coefficient (T/R) of 300 in the absence of substrate. Suppose that a mutation reversed the ratio. Select the effects this mutation will have on the relationship between the rate of the reaction (V) and substrate concentration, [S]. ㅁㅁㅁ The enzyme would likely follow Michaelis-Menten kinetics. The plot of V versus [S] would be sigmoidal. The enzyme would mostly be in the T form. The plot of V versus [S] would be hyperbolic. The enzyme would be more active.arrow_forwardPenicillin is hydrolyzed and thereby rendered inactive by penicillinase (also known as ẞ-lactamase), an enzyme present in some penicillin-resistant bacteria. The mass of this enzyme in Staphylococcus aureus is 29.6 kDa. The amount of penicillin hydrolyzed in 1 minute in a 10.0 mL. solution containing 1.00 x 10 g of purified penicillinase was measured as a function of the concentration of penicillin. Assume that the concentration of penicillin does not change appreciably during the assay. Plots of V versus [S] and 1/V versus 1/[S] for these data are shown. Vo (* 10 M minute"¹) 7.0 6.0 5.0 4.0 3.0 20 1.0 0.0 о 10 20 30 1/Vo (* 10 M1 minute) 20 103 90 BO 70 50 [S] (* 100 M) 40 50 60 y=762x+1.46 × 10" [Penicillin] (M) Amount hydrolyzed (uM) 1 0.11 3 0.25 5 0.34 10 0.45 30 0.58 50 0.61arrow_forward
- Consider the four graphs shown. In each graph, the solid blue curve represents the unmodified allosteric enzyme and the dashed green curve represents the enzyme in the presence of the effector. Identify which graphs correctly illustrate the effect of a negative modifier (allosteric inhibitor) and a positive modifier (allosteric activator) on the velocity curve of an allosteric enzyme. Place the correct graph in the set of axes for each type of modifier. Negative modifier Reaction velocity - Positive modifier Substrate concentration - Reaction velocity →→→→ Substrate concentration Answer Bankarrow_forwardConsider the reaction: phosphoglucoisomerase Glucose 6-phosphate: glucose 1-phosphate After reactant and product were mixed and allowed to reach at 25 °C, the concentration of each compound at equilibrium was measured: [Glucose 1-phosphate] = 0.01 M [Glucose 6-phosphate] = 0.19 M Calculate Keq and AG°'. Код .0526 Incorrect Answer 7.30 AG°' kJ mol-1 Incorrect Answerarrow_forwardClassify each phrase as describing kinases, phosphatases, neither, or both. Kinases Phosphatases Neither Both Answer Bank transfer phosphoryl groups to acidic amino acids in eukaryotes may use ATP as a phosphoryl group donor remove phosphoryl groups from proteins catalyze reactions that are the reverse of dephosphorylation reactions regulate the activity of other proteins catalyze phosphorylation reactions PKA as an example turn off signaling pathways triggered by kinasesarrow_forward
- Consider the reaction. kp S P kg What effects are produced by an enzyme on the general reaction? AG for the reaction increases. The rate constant for the reverse reaction (kr) increases. The reaction equilibrium is shifted toward the products. The concentration of the reactants is increased. The activation energy for the reaction is lowered. The formation of the transition state is promoted.arrow_forwardThe graph displays the activities of wild-type and several mutated forms of subtilisin on a logarithmic scale. The mutations are identified as: • The first letter is the one-letter abbreviation for the amino acid being altered. • The number identifies the position of the residue in the primary structure. ⚫ The second letter is the one-letter abbreviation for the amino acid replacing the original one. • Uncat. refers to the estimated rate for the uncatalyzed reaction. Log₁(S-1) Wild type S221A H64A -5 D32A S221A H64A D32A -10 Uncat. How would the activity of a reaction catalyzed by a version of subtilisin with all three residues in the catalytic triad mutated compare to the activity of the uncatalyzed reaction? It would have more activity, because the reaction catalyzed by the triple mutant is approximately three-fold faster than the uncatalyzed reaction. It would have less activity, because the reaction catalyzed by the triple mutant is approximately 1000-fold slower than the…arrow_forwardB Substrate Product AL Product Substrate Reaction progress- Reaction progress- omplete the passage describing the two reactions. In reaction A, the stability of the substrate is (AG) of the reaction is positive, Incorrect Answer greater than the stability of the product. The free-energy change Incorrect Answer so the reaction is considered In reaction B, the stability of the substrate is (AG) of the reaction is less than Incorrect Answer endergonic and Incorrect Answer not spontaneous. Incorrect Answer the stability of the product. The free-energy change negative, so the reaction is considered Incorrect Answer exergonic and spontaneous. Incorrect Answer Incorrect Answerarrow_forward
- BiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningHuman Physiology: From Cells to Systems (MindTap ...BiologyISBN:9781285866932Author:Lauralee SherwoodPublisher:Cengage Learning
- Biology: The Dynamic Science (MindTap Course List)BiologyISBN:9781305389892Author:Peter J. Russell, Paul E. Hertz, Beverly McMillanPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage LearningBiology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage Learning





