Differential Equations: Computing and Modeling (5th Edition), Edwards, Penney & Calvis
5th Edition
ISBN: 9780321816252
Author: C. Henry Edwards, David E. Penney, David Calvis
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2.6, Problem 8P
Program Plan Intro
Program Description: Purpose ofproblem is to construct a table for the approximation solution and the actual solution of
Summary Introduction:
Purpose will use RungeKutta’s method to construct the table of the approximation solution and the actual solution
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
QUESTION
An observation indicates that the frog population Q(t) in a small pond is 25 initially and
satisfies the logistic equation
Q(t)' = 0.0225Q(t) – 0.0003Q(t)?,
(with t in months.)
a. Apply Modified Euler's method together with any computer program to approximate the
solution for 10 years. Use the step size ofh = 1 and then with h = 0.5
b. Find out the percentage of the limiting population of 75 frogs has been attained after 5
years and after 10 years
c. Summarize your findings in (b)
Using MATLAB, develop a computer program for the finite difference solution with general
θ scheme for the 1D consolidation of a uniform layer of soil. Compare the results for θ=0, 0.5, 2/3 and 1.0 for α=0.49 and α=0.51 against the analytical solution of Terzaghi’s equation for T=0.5.
Apply the program to both cases of double draining layer and single draining layer.
You solve a non-singular system of 1,000 linear equations with 1,000 unknowns. Your code uses the Gauss-Jordan
algorithm with partial pivoting using double precision numbers and arithmetics. Why would the 2-norm of the residual
of your solution not be zero?
Chapter 2 Solutions
Differential Equations: Computing and Modeling (5th Edition), Edwards, Penney & Calvis
Ch. 2.1 - Prob. 1PCh. 2.1 - Prob. 2PCh. 2.1 - Prob. 3PCh. 2.1 - Prob. 4PCh. 2.1 - Prob. 5PCh. 2.1 - Prob. 6PCh. 2.1 - Prob. 7PCh. 2.1 - Prob. 8PCh. 2.1 - Prob. 9PCh. 2.1 - Prob. 10P
Ch. 2.1 - Prob. 11PCh. 2.1 - Prob. 12PCh. 2.1 - Prob. 13PCh. 2.1 - Prob. 14PCh. 2.1 - Prob. 15PCh. 2.1 - Prob. 16PCh. 2.1 - Prob. 17PCh. 2.1 - Prob. 18PCh. 2.1 - Prob. 19PCh. 2.1 - Prob. 20PCh. 2.1 - Prob. 21PCh. 2.1 - Suppose that at time t=0, half of a logistic...Ch. 2.1 - Prob. 23PCh. 2.1 - Prob. 24PCh. 2.1 - Prob. 25PCh. 2.1 - Prob. 26PCh. 2.1 - Prob. 27PCh. 2.1 - Prob. 28PCh. 2.1 - Prob. 29PCh. 2.1 - A tumor may be regarded as a population of...Ch. 2.1 - Prob. 31PCh. 2.1 - Prob. 32PCh. 2.1 - Prob. 33PCh. 2.1 - Prob. 34PCh. 2.1 - Prob. 35PCh. 2.1 - Prob. 36PCh. 2.1 - Prob. 37PCh. 2.1 - Fit the logistic equation to the actual U.S....Ch. 2.1 - Prob. 39PCh. 2.2 - Prob. 1PCh. 2.2 - Prob. 2PCh. 2.2 - Prob. 3PCh. 2.2 - Prob. 4PCh. 2.2 - Prob. 5PCh. 2.2 - Prob. 6PCh. 2.2 - Prob. 7PCh. 2.2 - Prob. 8PCh. 2.2 - Prob. 9PCh. 2.2 - Prob. 10PCh. 2.2 - Prob. 11PCh. 2.2 - Prob. 12PCh. 2.2 - Prob. 13PCh. 2.2 - Prob. 14PCh. 2.2 - Prob. 15PCh. 2.2 - Prob. 16PCh. 2.2 - Prob. 17PCh. 2.2 - Prob. 18PCh. 2.2 - Prob. 19PCh. 2.2 - Prob. 20PCh. 2.2 - Prob. 21PCh. 2.2 - Prob. 22PCh. 2.2 - Prob. 23PCh. 2.2 - Prob. 24PCh. 2.2 - Use the alternatives forms...Ch. 2.2 - Prob. 26PCh. 2.2 - Prob. 27PCh. 2.2 - Prob. 28PCh. 2.2 - Consider the two differentiable equation...Ch. 2.3 - The acceleration of a Maserati is proportional to...Ch. 2.3 - Prob. 2PCh. 2.3 - Prob. 3PCh. 2.3 - Prob. 4PCh. 2.3 - Prob. 5PCh. 2.3 - Prob. 6PCh. 2.3 - Prob. 7PCh. 2.3 - Prob. 8PCh. 2.3 - A motorboat weighs 32,000 lb and its motor...Ch. 2.3 - A woman bails out of an airplane at an altitude of...Ch. 2.3 - According to a newspaper account, a paratrooper...Ch. 2.3 - Prob. 12PCh. 2.3 - Prob. 13PCh. 2.3 - Prob. 14PCh. 2.3 - Prob. 15PCh. 2.3 - Prob. 16PCh. 2.3 - Prob. 17PCh. 2.3 - Prob. 18PCh. 2.3 - Prob. 19PCh. 2.3 - Prob. 20PCh. 2.3 - Prob. 21PCh. 2.3 - Suppose that =0.075 (in fps units, with g=32ft/s2...Ch. 2.3 - Prob. 23PCh. 2.3 - The mass of the sun is 329,320 times that of the...Ch. 2.3 - Prob. 25PCh. 2.3 - Suppose that you are stranded—your rocket engine...Ch. 2.3 - Prob. 27PCh. 2.3 - (a) Suppose that a body is dropped (0=0) from a...Ch. 2.3 - Prob. 29PCh. 2.3 - Prob. 30PCh. 2.4 - Prob. 1PCh. 2.4 - Prob. 2PCh. 2.4 - Prob. 3PCh. 2.4 - Prob. 4PCh. 2.4 - Prob. 5PCh. 2.4 - Prob. 6PCh. 2.4 - Prob. 7PCh. 2.4 - Prob. 8PCh. 2.4 - Prob. 9PCh. 2.4 - Prob. 10PCh. 2.4 - Prob. 11PCh. 2.4 - Prob. 12PCh. 2.4 - Prob. 13PCh. 2.4 - Prob. 14PCh. 2.4 - Prob. 15PCh. 2.4 - Prob. 16PCh. 2.4 - Prob. 17PCh. 2.4 - Prob. 18PCh. 2.4 - Prob. 19PCh. 2.4 - Prob. 20PCh. 2.4 - Prob. 21PCh. 2.4 - Prob. 22PCh. 2.4 - Prob. 23PCh. 2.4 - Prob. 24PCh. 2.4 - Prob. 25PCh. 2.4 - Prob. 26PCh. 2.4 - Prob. 27PCh. 2.4 - Prob. 28PCh. 2.4 - Prob. 29PCh. 2.4 - Prob. 30PCh. 2.4 - Prob. 31PCh. 2.5 - Prob. 1PCh. 2.5 - Prob. 2PCh. 2.5 - Prob. 3PCh. 2.5 - Prob. 4PCh. 2.5 - Prob. 5PCh. 2.5 - Prob. 6PCh. 2.5 - Prob. 7PCh. 2.5 - Prob. 8PCh. 2.5 - Prob. 9PCh. 2.5 - Prob. 10PCh. 2.5 - Prob. 11PCh. 2.5 - Prob. 12PCh. 2.5 - Prob. 13PCh. 2.5 - Prob. 14PCh. 2.5 - Prob. 15PCh. 2.5 - Prob. 16PCh. 2.5 - Prob. 17PCh. 2.5 - Prob. 18PCh. 2.5 - Prob. 19PCh. 2.5 - Prob. 20PCh. 2.5 - Prob. 21PCh. 2.5 - Prob. 22PCh. 2.5 - Prob. 23PCh. 2.5 - Prob. 24PCh. 2.5 - Prob. 25PCh. 2.5 - Prob. 26PCh. 2.5 - Prob. 27PCh. 2.5 - Prob. 28PCh. 2.5 - Prob. 29PCh. 2.5 - Prob. 30PCh. 2.6 - Prob. 1PCh. 2.6 - Prob. 2PCh. 2.6 - Prob. 3PCh. 2.6 - Prob. 4PCh. 2.6 - Prob. 5PCh. 2.6 - Prob. 6PCh. 2.6 - Prob. 7PCh. 2.6 - Prob. 8PCh. 2.6 - Prob. 9PCh. 2.6 - Prob. 10PCh. 2.6 - Prob. 11PCh. 2.6 - Prob. 12PCh. 2.6 - Prob. 13PCh. 2.6 - Prob. 14PCh. 2.6 - Prob. 15PCh. 2.6 - Prob. 16PCh. 2.6 - Prob. 17PCh. 2.6 - Prob. 18PCh. 2.6 - Prob. 19PCh. 2.6 - Prob. 20PCh. 2.6 - Prob. 21PCh. 2.6 - Prob. 22PCh. 2.6 - Prob. 23PCh. 2.6 - Prob. 24PCh. 2.6 - Prob. 25PCh. 2.6 - Prob. 26PCh. 2.6 - Prob. 27PCh. 2.6 - Prob. 28PCh. 2.6 - Prob. 29PCh. 2.6 - Prob. 30P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Similar questions
- The finite difference method transforms the ordinary differential equation in a system of linear equations of the form with k=1,2,...,(n−1) , h=1/n, y0=0 and yn=5 . Knowing this, make n=5 and assemble the associated linear system. Then solve numerically using some iterative method and compare the numerical solution with the exact analytical solution y(x)=x^4+4x . So do the same for n=10 and comment on what you observed. code with python.arrow_forwardHow to apply the code for this question? What value to be inserted to run the code?arrow_forwardUse the secant method to solve the nonlinear equation xsinx -1 = 0, where x is in radians, starting with the initial interval of [0,2]. Show the corresponding solution and the minimum amount of iterations required. Draw the graph of the function.arrow_forward
- Determine the drag coefficient c needed for a parachutist of mass m=68.1kg to have a velocity of 40m/s after free-falling for time t=10s. Note: The acceleration due to gravity is 9.8m/s2. Use the Regula Falsi methodarrow_forwardIf you indicate the exact real root of the nonlinear formula f(x )=x³+2x-5 to four decimal points, calculate each approximation 0, 1, 2, 3, 4 using the secant method in the interval [1,2]. All results are marked up to four decisces. thank youarrow_forwardAn oscillating current in an electric circuit is described by i(t) = 9e cos(2rt) where t is in seconds. Use False Position Method to determine the value of t such that i=3.5. Plot the graph of the function to develop your initial guess. Terminate your computation when the approximate relative error falls below ɛs=10°. Give the results in a table.arrow_forward
- In your own words, please explain at least five drawbacks associated with the practise of using the direct method of solution in numerical analysis.arrow_forward• Suppose that we want to find a solution of the equation sin² (2) + 1-2x = 0, on the interval [0, π/2]. Is there a solution of the equation in this interval? How do you know?arrow_forwardPlease solve.arrow_forward
- Use matlab In Problems 5-10 use a numerical solver and Euler's method to obtain a four-decimal approximation of the indicated value. First use h 5 0.1 and then use h 5 0.05. 8. y'=xy+ sqrt(y), y(0)=1, y(0.5) I tried this method, but it gives me errors "un recongnized function or variable at 'xy'. Error in live 5 and error in line 17 close all clear clc f=@(x,y) xy+sqrty; % Given ODE x0=0; xf=0.5; % Interals of x y0=1; % Intital condition h1-0.1; % Step Size 1 y1=euler (x0, yo, xf, h¹, f); fprintf('For h=0.1, y(0.5) - %.4f/n', y1(end)) y2=euler (x0, yo, xf, h2, f); fprintf('For h=0.05, y(0.5)=%.4f/n', y2(end)) function y=euler (x0, yo, xf, h, f) y(1)=y0; x-x0:h:xf; for i=1:length(x) -1 f1-f(x(i), y(i)); y(i+1)=y(i)+h*f1; %Euler's Update end endarrow_forwardConsider a gas in a piston-cylinder device in which the temperature is held constant. As the volume of the device was changed, the pressure was mecas- ured. The volume and pressure values are reported in the following table: Volume, m Pressure, kPa, when I= 300 K 2494 1247 831 4 623 5 499 416 (a) Usc lincar interpolation to estimate the pressure when the volume is 3.8 m. (b) Usc cubic splinc interpolation to cstimate the pressure when the vol- ume is 3.8 m. (c) Usc lincar interpolation to cstimate the volume if the pressure is meas- ured to be 1000 kPa. (d) Usc cubic splinc interpolation to cstimate the volume if the pressure is mcasured to be 1000 kPa. 4.arrow_forwardUse Secant method to determine a root between x =1 and x= 3, of the simultaneous nonlinear equations. x² +(x-1)° +(y-2)° =14 x² +y² =9 Perform your calculations for 3 iterations.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- C++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology Ptr
C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr