PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
6th Edition
ISBN: 9781429206099
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 26, Problem 72P
To determine
Show that: the magnitude force on each pole is given as
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The magnetic force acting on a straight wire carrying current I of length
L in a uniform magnetic field B is given by
F = IL x B,
where L has length L and is pointing in the direction of the current.
Consider the loop centered at the origin shown in the figure below.
y= 4-x*
for -24x42
-2
2
(b) The torque with respect to a pivot point is defined by the cross
product of the separation vector i which is oriented from the pivot
point to the point where the force acts and the force,
チ=チxF.
Find the torque acting on this loop with respect to the origin as
the pivot point.
The magnetic dipole moment of a current-carrying loop of wire is in the positive z direction. If a uniform magnetic field is in the positive x direction the magnetic torque on the loop is: (0 , in the positive y direction, in the negative y direction, in the positive z direction, in the negative z direction.)
The armature (slender rod) AB has a mass of 0.20 kg and can pivot about the
pin at A. Movement is controlled by the electromagnet E, which exerts a
horizontal attractive force on the armature at B of FB = (0.20 (10–3) l 2) N,
Part A
where l in meters is the gap between the armature and the magnet at any instant.
(Figure 1)
If the armature lies in the horizontal plane, and is originally at rest, determine the speed of the contact at B the instant l = 0.01 m. Originally l = 0.02 m.
Express your answer to three significant figures and include the appropriate units.
Value
Units
v =
Submit
Request Answer
< Return to Assignment
Provide Feedback
Figure
< 1 of 1
E
150 mm
Chapter 26 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
Ch. 26 - Prob. 1PCh. 26 - Prob. 2PCh. 26 - Prob. 3PCh. 26 - Prob. 4PCh. 26 - Prob. 5PCh. 26 - Prob. 6PCh. 26 - Prob. 7PCh. 26 - Prob. 8PCh. 26 - Prob. 9PCh. 26 - Prob. 10P
Ch. 26 - Prob. 11PCh. 26 - Prob. 12PCh. 26 - Prob. 13PCh. 26 - Prob. 14PCh. 26 - Prob. 15PCh. 26 - Prob. 16PCh. 26 - Prob. 17PCh. 26 - Prob. 18PCh. 26 - Prob. 19PCh. 26 - Prob. 20PCh. 26 - Prob. 21PCh. 26 - Prob. 22PCh. 26 - Prob. 23PCh. 26 - Prob. 24PCh. 26 - Prob. 25PCh. 26 - Prob. 26PCh. 26 - Prob. 27PCh. 26 - Prob. 28PCh. 26 - Prob. 29PCh. 26 - Prob. 30PCh. 26 - Prob. 31PCh. 26 - Prob. 32PCh. 26 - Prob. 33PCh. 26 - Prob. 34PCh. 26 - Prob. 35PCh. 26 - Prob. 36PCh. 26 - Prob. 37PCh. 26 - Prob. 38PCh. 26 - Prob. 39PCh. 26 - Prob. 40PCh. 26 - Prob. 41PCh. 26 - Prob. 42PCh. 26 - Prob. 43PCh. 26 - Prob. 44PCh. 26 - Prob. 45PCh. 26 - Prob. 46PCh. 26 - Prob. 47PCh. 26 - Prob. 48PCh. 26 - Prob. 49PCh. 26 - Prob. 50PCh. 26 - Prob. 51PCh. 26 - Prob. 52PCh. 26 - Prob. 53PCh. 26 - Prob. 54PCh. 26 - Prob. 55PCh. 26 - Prob. 56PCh. 26 - Prob. 57PCh. 26 - Prob. 58PCh. 26 - Prob. 59PCh. 26 - Prob. 60PCh. 26 - Prob. 61PCh. 26 - Prob. 62PCh. 26 - Prob. 63PCh. 26 - Prob. 64PCh. 26 - Prob. 65PCh. 26 - Prob. 66PCh. 26 - Prob. 67PCh. 26 - Prob. 68PCh. 26 - Prob. 69PCh. 26 - Prob. 70PCh. 26 - Prob. 71PCh. 26 - Prob. 72PCh. 26 - Prob. 73PCh. 26 - Prob. 74PCh. 26 - Prob. 75PCh. 26 - Prob. 76PCh. 26 - Prob. 77PCh. 26 - Prob. 78PCh. 26 - Prob. 79PCh. 26 - Prob. 80PCh. 26 - Prob. 81P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A current loop with magnetic dipole moment is placed in a uniform magnetic field , with its moment making angle θ with the field. With the arbitrary choice of U = 0 for θ = 90°, prove that the potential energy of the dipole-field system is .arrow_forwardConsider an electron rotating in a circular orbit of radius r. Show that the magnitudes of the magnetic dipole moment and the angular momentum L of the electron are related by: = L=e2marrow_forwardA wire ismade into a circular shape of radius R and pivoted along a central support.The two ends of the sire are touching a banish that is connected to a &power source. The stricture is between the poles of a magnet such that we can assume there is a uniform magnetic field on the wire. In terms of a coordinate system with origin at the center ofthe ring, magneticfieldisBx=B0,By=Bz= 0. and the ring rotates about the z-axis. Find the torque on the ring siren it is not in the xz-plane.arrow_forward
- Check Your Understanding A uniform magnetic field of magnitude 1.5 T is directed horizontally from west to east, (a) What is the magnetic force on a proton at the instant when it is moving vertically downward in the field with a speed of 4 x 107 m/s? (b) Compare this force with the weight w of a proton.arrow_forwardA circular loop of wire of area 10 cm2 carries a current of 25 A. At a particular instant, the loop lies in the xy-plane and is subjected to a magnetic field B=(2.0i+6.0j+8.0k)103T . As viewed from above the xy-plane, the current is circulating clockwise. (a) What is the magnetic dipole moment of the current loop? (b) At this instant, what is the magnetic torque on the loop?arrow_forwardsay that B=(Bx,By,Bz)=(4,5,6)mT and u=(ux,uy,uz)=(6,7,5.5)Am^2. what is the torque acting on the current loop about the longitudinal axis which passes through centerarrow_forward
- Show that the magnitude of the magnetic field B along the positive z-axis through the center of a circular loop that carries a steady current I (see Fig. 1) can be expressed as HOIR²N 2(R2 + 2²)3/2 B(2) where R is the radius of the loop and N is the number of turns in the current loop.arrow_forwardA conducting rod of mass m = 40 g can freely slide down along the two vertical rail tracks as show below. The tracks are parallel to each other, separated by the distance l = 40 cm, and connected with a resistance R = 5.4 0 (the entire system form a circuit). Find the terminal velocity of the rode if the there is an external uniform magnetic field B = 2.7 T perpendicular to the tracks. Take g = 9.81 m/s. R ww. OB m The terminal velocity, v = 1.8188 Units m/s Find the speed of the rod (in m/s) as a function of time t (in s), assume that the rod starts to slide down from rest, v(0) = 0. Do not submit the units. Hint: use analogy with the RC circuits. The speed, v(t) = m/s. wwwarrow_forwardA cube-shaped permanent magnet is made of a ferromagnetic material with a magnetization M ofabout 8 * 10^5 A/m. The side length is 2 cm. (a) Find the magnetic dipole moment of the magnet.(b) Estimate the magnetic field due to the magnet at a point 10 cm from the magnet along its axis.arrow_forward
- A magnetised needle of magnetic moment 4.8 × 10-2² JT-¹ is placed at 30° with the direction of uniform magnetic field of magnitude 3 × 10-2 T. What is the torque acting on the needle ?arrow_forwardThe magnetic field B due to a small current loop (which is placed at the origin) is called a magnetic dipole. Let p = (x² + y² + z²)¹/² For p large, B = curl(A), where A = (-33, -3,0) R Current loop (a) Let C be a horizontal circle of radius R with center (0, 0, c), and parameterization c(t) where c is large. Which of the following correctly explains why A is tangent to C? A(c(t)) = So, A(c(t)) = A(c(t)) -(-² A(c(t)) = = A(c(t)) cos(0,0) p3 (1). Therefore, A is parallel to c'(t) and tangent to C. Rcos(t) R sin(t) = (-OS R sin(t) R cos(1) p³ So, A(c(1)) = -c'(1). Therefore, A is parallel to c'(t) and tangent to C. O BdS = = and c'(t)= (-R sin(t), R cos(t), 0) Rin(1,0) and c'(t) = (R cos(1), -R sin(1), 0) So, A(c(t)) c(t) = 0. Therefore, A is perpendicular to c'(t) and tangent to C. O R sin(1) R cos(1) (R$ R COS(0,0) and c'(t) = (R cos(t), - R sin(t), 0) R cos(1) p3 So, A(c(t)) - c'(t) = 0. Therefore, A is perpendicular to c' (t) and tangent to C. R sin(t) - and c'(t)= (-R sin(t), R…arrow_forwardWrite down an expression for the net force along the (tangentially to) arc of motion on a simple pendulum made of a metal rod of the length l and the mass m carrying the current I . The rod is suspended by the middle on a weightless wire of the length L in the magnetic field B and the gravitational field g perpendicular to the rod (see picture below).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning