PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
6th Edition
ISBN: 9781429206099
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 26, Problem 10P
To determine
The units of von Klitzing constant is ohm.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Compute for the total resistance, current, and voltage.
Ex. 37: Two resistance P and Q are connected
in series in one gap of meter bridge. The
balance point is at the centre of the wire, with
resistance 50 in the other gap. If P and Q are
connected in parallel in the same gap, the
known resistance is to be changed to 12 to
obtain the balance point at the centre again.
Calculate the resistance of P and Q.
Compute for the resistance, in nanoohms, of a copper resistor in the shape of a cylindrical shell carrying 8-ampere radial current. The dimensions of the cylinder are measured as
follows: 8.58 cm for the inner radius, 16.74 cm for the outer radius, and 0.49 m for the length.
Chapter 26 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
Ch. 26 - Prob. 1PCh. 26 - Prob. 2PCh. 26 - Prob. 3PCh. 26 - Prob. 4PCh. 26 - Prob. 5PCh. 26 - Prob. 6PCh. 26 - Prob. 7PCh. 26 - Prob. 8PCh. 26 - Prob. 9PCh. 26 - Prob. 10P
Ch. 26 - Prob. 11PCh. 26 - Prob. 12PCh. 26 - Prob. 13PCh. 26 - Prob. 14PCh. 26 - Prob. 15PCh. 26 - Prob. 16PCh. 26 - Prob. 17PCh. 26 - Prob. 18PCh. 26 - Prob. 19PCh. 26 - Prob. 20PCh. 26 - Prob. 21PCh. 26 - Prob. 22PCh. 26 - Prob. 23PCh. 26 - Prob. 24PCh. 26 - Prob. 25PCh. 26 - Prob. 26PCh. 26 - Prob. 27PCh. 26 - Prob. 28PCh. 26 - Prob. 29PCh. 26 - Prob. 30PCh. 26 - Prob. 31PCh. 26 - Prob. 32PCh. 26 - Prob. 33PCh. 26 - Prob. 34PCh. 26 - Prob. 35PCh. 26 - Prob. 36PCh. 26 - Prob. 37PCh. 26 - Prob. 38PCh. 26 - Prob. 39PCh. 26 - Prob. 40PCh. 26 - Prob. 41PCh. 26 - Prob. 42PCh. 26 - Prob. 43PCh. 26 - Prob. 44PCh. 26 - Prob. 45PCh. 26 - Prob. 46PCh. 26 - Prob. 47PCh. 26 - Prob. 48PCh. 26 - Prob. 49PCh. 26 - Prob. 50PCh. 26 - Prob. 51PCh. 26 - Prob. 52PCh. 26 - Prob. 53PCh. 26 - Prob. 54PCh. 26 - Prob. 55PCh. 26 - Prob. 56PCh. 26 - Prob. 57PCh. 26 - Prob. 58PCh. 26 - Prob. 59PCh. 26 - Prob. 60PCh. 26 - Prob. 61PCh. 26 - Prob. 62PCh. 26 - Prob. 63PCh. 26 - Prob. 64PCh. 26 - Prob. 65PCh. 26 - Prob. 66PCh. 26 - Prob. 67PCh. 26 - Prob. 68PCh. 26 - Prob. 69PCh. 26 - Prob. 70PCh. 26 - Prob. 71PCh. 26 - Prob. 72PCh. 26 - Prob. 73PCh. 26 - Prob. 74PCh. 26 - Prob. 75PCh. 26 - Prob. 76PCh. 26 - Prob. 77PCh. 26 - Prob. 78PCh. 26 - Prob. 79PCh. 26 - Prob. 80PCh. 26 - Prob. 81P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Answer the following questions: (a) A steady current flows in a metallic conductor of non-uniform cross- section. Which of these quantities is constant along the conductor: current, current density, electric field, drift speed? (b) Is Ohm's law universally applicable for all conducting elements? If not, give examples of elements which do not obey Ohm's law. (c) A low voltage supply from which one needs high currents must have very low internal resistance. Why?arrow_forwardCompute for the total resistance of the connection.arrow_forwardDiscuss how the Hall effect could be used to obtain information on free charge density in a conductor. (Hints: Consider how drift velocity and current are related)arrow_forward
- ) An electron beam consist of 1016 electrons passing through a given cross section n one minute. (a) Determine the current in amperes. (b) If the potential difference between the tip of the electron gun and the screen is 5000 V, determine the resistance of the path taken by the electron beam.arrow_forwardSuppose a circuit contains an electromotive force (a battery) that produces a voltage of E(t) volts (V), a capacitor with a capacitance of C' farads (F), and a resistor with a resistance of R ohms (N). is the charge (in coulombs), so in this case The voltage drop across the capacitor is where Q C' Kirchhoff's Law gives Q RI+ = E(t). с Since I = dQ R + dt dQ dt 1 Q we have the differential equation = E(t). Suppose the resistance R is 200, the capacitance C is 0.1F, a battery gives a constant voltage E of 30V, and the initial charge is Q(0) = 0 coulombs. Find the charge Q(t) and the current I(t) at time t. Q(t) = I(t) =arrow_forwardIf the density and atomic mass of copper are respectively 8.80 x 103 kg/m3 and 63.5 kg/kmol (note that 1 kmol = 1,000 mol), and copper has one free electron per copper atom, determine the following. (a) the drift speed of the electrons in a 10 gauge copper wire (2.588 mm in diameter) carrying a 12.5 A current m/s (b) the Hall voltage if a 3.08 T field is applied perpendicular to the wire Varrow_forward
- The current i in a circuit is inverselyproportional to its resistance Z measured in ohms.Suppose that when the current in a circuit is 30 amperes, theresistance is 8 ohms. Find the current in the same circuitwhen the resistance is 10 ohms.arrow_forwardIn a 100-m-long conductor of cylindrical cross-section (radius ro = 5 mm), the axial current density is J = î2 A/m². The conductivity is o= 5.8-107 S/m. Find a) the current flowing through the conductor, b) the voltage across the entire length of the conductor, c) the overall resistance of the conductor.arrow_forwardSuppose the current in a conductor decreases exponentially with time according to the equation I(t) = I0e-t/τ, where I0 is the initial current (at t = 0), and τ is a constant having dimensions of time. Consider a fixed observation point within the conductor. (Use the following as necessary: I0 and τ) (a) How much charge passes this point between t = 0 and t = τ? (If applicable, round any coefficients to 3 decimal places.)Q(τ) = (b) How much charge passes this point between t = 0 and t = 10τ? (If applicable, round any coefficients to 5 decimal places.)Q(10τ) = (c) How much charge passes this point between t = 0 and t = ∞? (If applicable, round any coefficients to 3 decimal places.)Q(∞) =arrow_forward
- How many free electrons are there in a rectangular block of a conductor whose dimension is 8 m by 4 m by 3 m? The electrons of this conductor have a drift velocity of 4 m/s when a 9.6 A of currentis applied thru a cross-sectional area of 0.005 m2 Use electronic charge of 1.6 x 10 –19 coulomb per electron. Express your answer in scientific notation whose unit is electrons per cubic meter.arrow_forwardA disc of thickness t has radius b and a central hole of radius a. Taking the conduc- tivity of the disc as o, find the resistance between (a) The hole and the rim of the disc |(b) The two flat sides of the discarrow_forwardplease solve asap and in detailarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY