PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
6th Edition
ISBN: 9781429206099
Author: Tipler
Publisher: MAC HIGHER
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 26, Problem 15P

(a)

To determine

The magnetic force on a charge.

(a)

Expert Solution
Check Mark

Answer to Problem 15P

  (3.804×106N)(k^)

Explanation of Solution

Given:

Charge on the point particle =q=3.64 nC =3.64×109

Velocity of the particle =v=(2750ms)i^

Magnetic field =B=(0.38 T)j^

Formula Used:

Magnetic force on a moving charged particle in a magnetic field region is given as

  F=q(v×B)

Calculation:

Magnetic force on the particle is given as

  F=q(v×B)F=(3.64×109)((2750)i^×(0.38)j^)F=(3.64×109)(2750)(0.38)(i^×j^)F=(3.804×106)(k^)F=(3.804×106N)(k^)

Conclusion:

The magnetic force on the particle is (3.804×106N)(k^) .

(b)

To determine

The magnetic force on a charge.

(b)

Expert Solution
Check Mark

Answer to Problem 15P

  (7.51×106N)(k^)

Explanation of Solution

Given:

Charge on the point particle =q=3.64 nC =3.64×109

Velocity of the particle =v=(2750ms)i^

Magnetic field =B=(0.75 T)i^+(0.75 T)j^

Formula Used:

Magnetic force on a moving charged particle in a magnetic field region is given as

  F=q(v×B)

Calculation:

Magnetic force on the particle is given as

  F=q(v×B)F=(3.64×109)((2750)i^×(0.75 i^+0.75 j^))F=(3.64×109)(2750)(0.75)(i^×i^)+(3.64×109)(2750)(0.75)(i^×j^)F=(3.64×109)(2750)(0.75)(0)+(3.64×109)(2750)(0.75)(k^)F=0+(7.51×106)(k^)F=(7.51×106N)(k^)

Conclusion:

The magnetic force on the particle is (7.51×106N)(k^) .

(c)

To determine

The magnetic force on a charge.

(c)

Expert Solution
Check Mark

Answer to Problem 15P

  0 N

Explanation of Solution

Given:

Charge on the point particle =q=3.64 nC =3.64×109

Velocity of the particle =v=(2750ms)i^

Magnetic field =B=(0.65 T)i^

Formula Used:

Magnetic force on a moving charged particle in a magnetic field region is given as

  F=q(v×B)

Calculation:

Magnetic force on the particle is given as

  F=q(v×B)F=(3.64×109)((2750)i^×(0.65)i^)F=(3.64×109)(2750)(0.65)(i^×i^)F=(3.64×109)(2750)(0.65)(0)F=0 N

Conclusion:

The magnetic force on the particle is 0 N .

(d)

To determine

The magnetic force on a charge.

(d)

Expert Solution
Check Mark

Answer to Problem 15P

  (7.51×106N)(j^)

Explanation of Solution

Given:

Charge on the point particle =q=3.64 nC =3.64×109

Velocity of the particle =v=(2750ms)i^

Magnetic field =B=(0.75 T)i^+(0.75 T)k^

Formula Used:

Magnetic force on a moving charged particle in a magnetic field region is given as

  F=q(v×B)

Calculation:

Magnetic force on the particle is given as

  F=q(v×B)F=(3.64×109)((2750)i^×(0.75 i^+0.75 k^))F=(3.64×109)(2750)(0.75)(i^×i^)+(3.64×109)(2750)(0.75)(i^×k^)F=(3.64×109)(2750)(0.75)(0)+(3.64×109)(2750)(0.75)(j^)F=0+(7.51×106)(j^)F=(7.51×106N)(j^)

Conclusion:

The magnetic force on the particle is (7.51×106N)(j^) .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A piece of metal is placed on top of a 2.0 - kg wooden block (mass density = 562 kg/m³) piece. UseArchimedes' principle to calculate the mass (in kg) of copper if the top of the wood surface is exactly at thewater's surface?
A filmmaker wants to achieve an interesting visual effect by filming a scene through a converging lens with a focal length of 50.0 m. The lens is placed betwen the camera and a horse, which canters toward the camera at a constant speed of 7.9 m/s. The camera starts rolling when the horse is 36.0 m from the lens. Find the average speed of the image of the horse (a) during the first 2.0 s after the camera starts rolling and (b) during the following 2.0 s.
Answer the question (Physics)

Chapter 26 Solutions

PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY