Physics for Scientists and Engineers With Modern Physics
9th Edition
ISBN: 9781133953982
Author: SERWAY, Raymond A./
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 26, Problem 58AP
(a)
To determine
The induced charge on each of the original plates in the given cases.
(b)
To determine
The potential difference between the middle plate and the other plates.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The electric field between two parallel plates is 10.0 V/m. If the plates are 5.0 mm apart and hold a charge of 12 μC, what is the
capacitance of the plates?
○ 240 μF
0.24 µF
○ 60 μF
○ 600 μF
○ None of the choices are correct.
You have been hired by a "storm chaser" as an assistant. This individual loves to find locations at which tornadoes and violent lightning storms are occurring. While there, he takes photographs and makes
electromagnetic measurements. You are on a chase with him to a lightning storm in Florida. He explains to you that a cloud layer and the ground can be considered as the plates of a capacitor that stores charge,
with the ground being charged negatively. The capacitor continuously leaks charge due to the free charges in the air between the plates. In thunderclouds, however, various processes result in charge distributions
that eventually lead to lightning, a phenomenon that delivers negative charge to the ground. Therefore, the lightning recharges the capacitor. Ahead of you is a cloud layer that the storm chaser measures to be of
a 1.15 km² and height 17 km above the ground. He then uses a special apparatus called a field mill to measure that the electric field under the cloud is 4.00 x…
You have been hired by a "storm chaser" as an assistant. This individual loves to find locations at which tornadoes and violent lightning storms are occurring. While there, he takes photographs and makes electromagnetic measurements. You are on a chase with him to a lightning storm in Florida. He explains to you that a cloud layer and the ground can be considered as the plates of a capacitor that stores charge, with the ground being charged negatively. The capacitor continuously leaks charge due to the free charges in the air between the plates. In thunderclouds, however, various processes result in charge distributions that eventually lead to lightning, a phenomenon that delivers negative charge to the ground. Therefore, the lightning recharges the capacitor. Ahead of you is a cloud layer that the storm chaser measures to be of area 1.70 km2 and height 7 km above the ground. He then uses a special apparatus called a field mill to measure that the electric field under the cloud is 4.00…
Chapter 26 Solutions
Physics for Scientists and Engineers With Modern Physics
Ch. 26.1 - A capacitor stores charge Q at a potential...Ch. 26.2 - Many computer keyboard buttons are constructed of...Ch. 26.3 - Two capacitors are identical. They can be...Ch. 26.4 - You have three capacitors and a battery. In which...Ch. 26.5 - If you have ever tried to hang a picture or a...Ch. 26 - Prob. 1OQCh. 26 - Prob. 2OQCh. 26 - Prob. 3OQCh. 26 - Prob. 4OQCh. 26 - Prob. 5OQ
Ch. 26 - Prob. 6OQCh. 26 - Prob. 7OQCh. 26 - Prob. 8OQCh. 26 - Prob. 9OQCh. 26 - Prob. 10OQCh. 26 - Prob. 11OQCh. 26 - Prob. 12OQCh. 26 - Prob. 13OQCh. 26 - Prob. 14OQCh. 26 - Prob. 1CQCh. 26 - Prob. 2CQCh. 26 - Prob. 3CQCh. 26 - Explain why a dielectric increases the maximum...Ch. 26 - Prob. 5CQCh. 26 - Prob. 6CQCh. 26 - Prob. 7CQCh. 26 - Prob. 8CQCh. 26 - (a) When a battery is connected to the plates of a...Ch. 26 - Two conductors having net charges of +10.0 C and...Ch. 26 - Prob. 3PCh. 26 - An air-filled parallel-plate capacitor has plates...Ch. 26 - Prob. 5PCh. 26 - Prob. 6PCh. 26 - When a potential difference of 150 V is applied to...Ch. 26 - Prob. 8PCh. 26 - Prob. 9PCh. 26 - Prob. 10PCh. 26 - Prob. 11PCh. 26 - Review. A small object of mass m carries a charge...Ch. 26 - Prob. 13PCh. 26 - Prob. 14PCh. 26 - Find the equivalent capacitance of a 4.20-F...Ch. 26 - Given a 2.50-F capacitor, a 6.25-F capacitor, and...Ch. 26 - Prob. 17PCh. 26 - Prob. 18PCh. 26 - Prob. 19PCh. 26 - Prob. 20PCh. 26 - A group of identical capacitors is connected first...Ch. 26 - Prob. 22PCh. 26 - Four capacitors are connected as shown in Figure...Ch. 26 - Prob. 24PCh. 26 - Prob. 25PCh. 26 - Prob. 26PCh. 26 - Two capacitors give an equivalent capacitance of...Ch. 26 - Prob. 28PCh. 26 - Prob. 29PCh. 26 - Prob. 30PCh. 26 - Prob. 31PCh. 26 - A 3.00-F capacitor is connected to a 12.0-V...Ch. 26 - Prob. 33PCh. 26 - Prob. 34PCh. 26 - Prob. 35PCh. 26 - Two identical parallel-plate capacitors, each with...Ch. 26 - Two capacitors, C1 = 25.0 F and C2 = 5.00 F, are...Ch. 26 - A parallel-plate capacitor has a charge Q and...Ch. 26 - Prob. 39PCh. 26 - Prob. 40PCh. 26 - Prob. 41PCh. 26 - Prob. 42PCh. 26 - Prob. 43PCh. 26 - Prob. 44PCh. 26 - Determine (a) the capacitance and (b) the maximum...Ch. 26 - Prob. 46PCh. 26 - Prob. 47PCh. 26 - Prob. 48PCh. 26 - Prob. 49PCh. 26 - Prob. 50PCh. 26 - An infinite line of positive charge lies along the...Ch. 26 - Prob. 52PCh. 26 - Prob. 53PCh. 26 - Prob. 54APCh. 26 - Prob. 55APCh. 26 - Prob. 56APCh. 26 - A uniform electric field E = 3 000 V/m exists...Ch. 26 - Prob. 58APCh. 26 - Prob. 59APCh. 26 - Why is the following situation impossible? A...Ch. 26 - Prob. 61APCh. 26 - A parallel-plate capacitor with vacuum between its...Ch. 26 - Prob. 63APCh. 26 - Prob. 64APCh. 26 - Prob. 65APCh. 26 - (a) Two spheres have radii a and b, and their...Ch. 26 - Prob. 67APCh. 26 - A parallel-plate capacitor of plate separation d...Ch. 26 - Prob. 69APCh. 26 - Prob. 70APCh. 26 - To repair a power supply for a stereo amplifier,...Ch. 26 - Prob. 72CPCh. 26 - Prob. 73CPCh. 26 - Consider two long, parallel, and oppositely...Ch. 26 - Prob. 75CPCh. 26 - Prob. 76CPCh. 26 - Prob. 77CPCh. 26 - Prob. 78CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two large, parallel metal plates, each of area A, are oriented horizontally and separated by a distance 3d. A grounded conducting wire joins them, and initially each plate carries no charge. Now a third identical plate carrying charge Q is inserted between the two plates, parallel to them and located a distance d from the upper plate as shown in Figure P20.84. (a) What induced charge appears on each of the two original plates? (b) What potential difference appears between the middle plate and each of the other plates? Figure P20.84arrow_forwardA water molecule is made up of two hydrogen atoms and one oxygen atom, with a total of 10 electrons and 10 protons. The molecule is modeled as a dipole with an effective separation d = 3.9 1012 m between its positive and negative particles. What is the electric potential energy stored in the dipole? What does the sign of your answer mean?arrow_forward(a) What is the final speed of an electron accelerated from rest through a voltage of 25.0 MV by a negatively charged Van de Graff terminal? (b) What is unreasonable about this result? (c) Which assumptions are responsible?arrow_forward
- The electric field strength between two parallel conducting plates separated by 4.00 cm is 7.50 104 V/m. (a) What is the potential difference between the plates? (b) The plate with the lowest potential is taken to be at zero volts. What is the potential 1.00 cm from that plate (and 3.00 cm from the other)?arrow_forwardTwo 5.00-nC charged particles are in a uniform electric field with a magnitude of 625 N/C. Each of the particles is moved from point A to point B along two different paths, labeled in Figure P26.65. a. Given the dimensions in the figure, what is the change in the electric potential experienced by the particle that is moved along path 1 (black)? b. What is the change in the electric potential experienced by the particle that is moved along path 2 (red)? c. Is there a path between the points A and B for which the change in the electric potential is different from your answers to parts (a) and (b)? Explain. FIGURE P26.65 Problems 65, 66, and 67.arrow_forwardA spherical capacitor is formed from two concentric spherical conducting spheres separated by vacuum. Tire inner sphere has radius 12.5 cm and the outer sphere has radius 14.8 cm. A potential difference of 120 V is applied to the capacitor, (a) What is the capacitance of the capacitor? tb) What is the magnitude of the electrical field at r = 12.6 cm, just outside the inner sphere? (c) What is the magnitude of the electrical field at r = 14.7 cm, just inside the outer sphere? (d) For a parallel-plate capacitor the electrical field is uniform in the region between the plates, except near the edges of the plates. Is this also true for a spherical capacitor?arrow_forward
- A particle with charge 1.60 1019 C enters midway between two charged plates, one positive and the other negative. The initial velocity of the particle is parallel to the plates and along the midline between them (Fig. P26.48). A potential difference of 300.0 V is maintained between the two charged plates. If the lengths of the plates are 10.0 cm and they are separated by 2.00 cm, find the greatest initial velocity for which the particle will not be able to exit the region between the plates. The mass of the particle is 12.0 1024 kg. FIGURE P26.48arrow_forwardFour parallel metal plates P1, P2, P3, and P4, each of area 7.50 cm2, are separated successively by a distance d = 1.19 mm as shown in Figure P25.34. Plate P1 is connected to the negative terminal of a battery, and P2 is connected to the positive terminal. The battery maintains a potential difference of 12.0 V. (a) If P3 is connected to the negative terminal, what is the capacitance of the three-plate system P1P2P3? (b) What is the charge on P2? (c) If P4 is now connected to the positive terminal, what is the capacitance of the four-plate system P1P2P3P4? (d) What is the charge on P4?arrow_forwardLightning can be studied with a Van de Graaff generator, which consists of a spherical dome on which charge is continuously deposited by a moving belt. Charge can be added until the electric field at the surface of the dome becomes equal to the dielectric strength of air. Any more charge leaks off in sparks as shown in Figure P20.67. Assume the dome has a diameter of 30.0 cm and is surrounded by dry air with a breakdown electric field of 3.00 106 V/m. (a) What is the maximum potential of the dome? (b) What is the maximum charge on the dome? Figure P20.67 David Evison/Shutterstock.comarrow_forward
- Find an expression for the electric field between the two conducting disks in Figure P27.61. Make sure your expression is general enough to include the possibility of a dielectric between the disks. Check your answer using the information given in Section 27-8. Figure P27.61arrow_forwardAn electron with a speed of 3.00 106 m/s moves into a uniform electric field of magnitude 1.00 103 N/C. The field lines are parallel to the electrons velocity and pointing in the same direction as the velocity. How far does the electron travel before it is brought to rest? (a) 2.56 cm (b) 5.12 cm (c) 11.2 cm (d) 3.34 m (e) 4.24 marrow_forward(a) What voltage will accelerate electrons to a speed of 6.00107 m/s? (b) Find the radius of curvature of the path of a proton accelerated through this potential in a 0.500-T field and compare this with tire radius of curvature of an electron accelerated through the same potential.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY