Physics (5th Edition)
5th Edition
ISBN: 9780134051802
Author: Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 26, Problem 54PCE
The observer in Figure 26-65 is positioned so that the far edge of the bottom of the empty glass (not to scale) is just visible When the glass is filled to the top with water, the center of the bottom of the glass is just visible to the observer. Find the height H. of the glass, given that its width is W = 5.7cm.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
109 In Fig. 34-54, a fish watcher at
point P watches a fish through a
glass wall of a fish tank. The watcher
is level with the fish; the index of re-
fraction of the glass is 8/5, and that Watcher
of the water is 4/3. The distances are
di = 8.0 cm, dz = 3.0 cm, and dz =
6.8 cm. (a) To the fish, how far away
does the watcher appear to be?
(Hint: The watcher is the object.
Light from that object passes
through the wall's outside surface, which acts as a refracting sur-
face. Find the image produced by that surface. Then treat that im-
age as an object whose light passes through the wall's inside sur-
face, which acts as another refracting surface.) (b) To the watcher,
how far away does the fish appear to be?
de
D
Wall
Figure 34-54
Problem 109.
Building contractors often install double-glazed windows to
prevent thermal energy (heat) from entering or exiting a
building. In addition to being effective insulators, such
windows present interesting optical effects.
glass
In the figure, a double-glazed window consists of two identical
1.54), each yg
panes of glass (ng
32.0 mm thick,
air
separated by an air gap of ya
= 25.6 mm. If light incident on
a
the glass makes an angle of o = 40.00° with respect to the
glass, find the shift in path Ax as the light enters the room. Use
y
glass
Na =
1.00 for the index of refraction of air.
Ax =
mm
(a) A small light fixture on the bottom of a swimming pool is 0.72 m below the surface. The light emerging from the still water forms a circle on the water surface. What is the diameter
of this circle? (Give your answer, in m, to at least two decimal places.)
(b) What If? If a 2.13 cm thick layer of oil (n = 1.35) is spread uniformly over the surface of the water, what is the diameter of the circle of light emerging from the swimming pool?
(Give your answer, in m, to at least two decimal places.)
Chapter 26 Solutions
Physics (5th Edition)
Ch. 26.1 - A ray of light reflects from a horizontal flat...Ch. 26.2 - A meterstick is placed 40 cm in front of a plane...Ch. 26.3 - Rank the following spherical mirrors in order of...Ch. 26.4 - A spherical mirror with an object at the distance...Ch. 26.5 - (a) As a beam of light passes from flint glass to...Ch. 26.6 - The lenses shown in Figure 26-49 have objects that...Ch. 26.7 - An object at the distance do = 15 cm from a lens...Ch. 26.8 - Referring to Figure 26-53, do you expect the index...Ch. 26 - Two plane mirrors meet at right angles at the...Ch. 26 - Two plane mirrors meet at right angles at the...
Ch. 26 - What is the radius of curvature of a plane mirror?...Ch. 26 - Dish receivers for satellite TV always use the...Ch. 26 - Suppose you would like to start a fire by focusing...Ch. 26 - Prob. 6CQCh. 26 - A swimmer at point 8 in Figure 26-55 needs help...Ch. 26 - When you observe a mirage on a hot day, what are...Ch. 26 - Sitting on a deserted beach one evening, you watch...Ch. 26 - The Disappearing Eyedropper The photograph in...Ch. 26 - The Invisible Man In the H. G. Wells novel The...Ch. 26 - Whats the Secret? The top of Figure 26-57 shows...Ch. 26 - A laser beam is reflected by a plane mirror. It is...Ch. 26 - The angle between the Sun and a rescue aircraft is...Ch. 26 - The reflecting surfaces of two mirrors form a...Ch. 26 - A ray of light reflects from a plane mirror with...Ch. 26 - Predict/Calculate A small vertical mirror hangs on...Ch. 26 - Sunlight enters a room at an angle of 32 above the...Ch. 26 - You stand 1.50 m in front of a wall and gaze...Ch. 26 - Predict/Calculate Standing 2.3 m in front of a...Ch. 26 - How many times does the light beam shown in Figure...Ch. 26 - If you view a clock in a mirror as in Figure...Ch. 26 - A 13.5-foot-long, nearsighted python is stretched...Ch. 26 - (a) How rapidly does the distance between you and...Ch. 26 - You are 1.8 m tall and stand 2.8 m from a plane...Ch. 26 - The rear window in a car is approximately a...Ch. 26 - Predict/Calculate You hold a small plane mirror...Ch. 26 - Prob. 16PCECh. 26 - Astronomers often use large mirrors in their...Ch. 26 - A section of a sphere has a radius of curvature of...Ch. 26 - A mirrored-glass gazing globe in a garden is 31.9...Ch. 26 - Sunlight reflects from a concave piece of broken...Ch. 26 - You hold a shiny tablespoon at aims length and...Ch. 26 - You hold a shiny tablespoon at arms length and...Ch. 26 - An object is placed to the left of a concave...Ch. 26 - An object is placed to the left of a convex...Ch. 26 - A small object is located 36.0 cm in front of a...Ch. 26 - An object with a height of 33 cm is placed 2.0 m...Ch. 26 - An object with a height of 33 cm is placed 2.0 m...Ch. 26 - An object with a height of 33 cm is placed 2.0 m...Ch. 26 - Find the location and magnification of the image...Ch. 26 - During a daytime football game you notice that a...Ch. 26 - A convex mirror on the passenger side of a car...Ch. 26 - Predict/Calculate A magician wishes to create the...Ch. 26 - A person 1.8 m tall stands 0.86 m from a...Ch. 26 - Shaving/makeup mirrors typically have one flat and...Ch. 26 - The Hale Telescope The 200-inch-diameter concave...Ch. 26 - A concave mirror produces a virtual image that is...Ch. 26 - A concave mirror produces a real image that is...Ch. 26 - The virtual image produced by a convex mirror is...Ch. 26 - You view a nearby tree in a concave mirror. The...Ch. 26 - A shaving/makeup mirror produces an erect image...Ch. 26 - A concave mirror with a focal length of 36 cm...Ch. 26 - Predict/Explain When a ray of light enters a glass...Ch. 26 - Samurai Fishing A humorous scene in Akira...Ch. 26 - Prob. 44PCECh. 26 - Predict/Explain A kitchen has twin side-by-side...Ch. 26 - Light travels a distance of 0.902 m in 4.00 ns in...Ch. 26 - Prob. 47PCECh. 26 - The angle of refraction of a ray of light...Ch. 26 - Ptolemys Optics One of the many works published by...Ch. 26 - A submerged scuba diver looks up toward the calm...Ch. 26 - Prob. 51PCECh. 26 - Light is refracted as it travels from a point A in...Ch. 26 - You have a semicircular disk of glass with an...Ch. 26 - The observer in Figure 26-65 is positioned so that...Ch. 26 - A coin is lying at the bottom of a pool of water...Ch. 26 - Prob. 56PCECh. 26 - Prob. 57PCECh. 26 - Predict/Calculate Suppose the glass paperweight in...Ch. 26 - While studying physics at the library late one...Ch. 26 - A horizontal beam of light enters a 45 90 45 prism...Ch. 26 - A laser team enters one of the sloping faces of...Ch. 26 - (a) Use a ray diagram to determine the approximate...Ch. 26 - (a) Use a ray diagram to determine the approximate...Ch. 26 - An object is a distance ft2 from a convex lens (a)...Ch. 26 - An object is a distance 2f from a convex lens (a)...Ch. 26 - Two lenses that are 35 cm apart are used to form...Ch. 26 - Two lenses that are 35 cm apart are used to form...Ch. 26 - A convex lens is held over a piece of paper...Ch. 26 - A concave lens has a focal length of 39cm. Find...Ch. 26 - When an object is located 38 cm to the left of a...Ch. 26 - An object with a height of 2 54 cm is placed 36 3...Ch. 26 - A lens for a digital camera has a focal length...Ch. 26 - Predict/Calculate An object is located to the left...Ch. 26 - Predict/Calculate You have two lenses at your...Ch. 26 - (a) Determine the distance from lens 1 to the...Ch. 26 - (a) Determine the distance from lens 1 to the...Ch. 26 - Predict/Calculate An object is located to the left...Ch. 26 - BIO Predict/Calculate Albert is nearsighted and...Ch. 26 - A small insect viewed through a convex lens is 1.8...Ch. 26 - Predict/Calculate A friend tells you that when he...Ch. 26 - Predict/Calculate A friend tells you that when she...Ch. 26 - Prob. 82PCECh. 26 - Predict/Explain You take a picture of a rainbow...Ch. 26 - The index of refraction for red light in a certain...Ch. 26 - A horizontal incident beam consisting of white...Ch. 26 - Prob. 86PCECh. 26 - CE Jurassic Park A T. rex chases the heroes of...Ch. 26 - CE Predict/Explain If a lens is immersed in water...Ch. 26 - CE Predict/Explain A glass slab surrounded by air...Ch. 26 - CE Inverse Lenses Suppose we mold a hollow piece...Ch. 26 - Standing 2 5 m in front of a small vertical mirror...Ch. 26 - Prob. 92GPCh. 26 - (a) Find the two locations where an object can be...Ch. 26 - A convex mirror with a focal length of -85 is used...Ch. 26 - Prob. 95GPCh. 26 - Predic/Calculate A film of oil with an index of...Ch. 26 - Figure 26-75 shows a ray of light entering one end...Ch. 26 - Suppose the fiber depicted in Figure 26-75 has an...Ch. 26 - An arrow 2.00 cm long is located 75.0 cm from a...Ch. 26 - A convex lens with f1 = 200 cm is mounted 40.0 cm...Ch. 26 - Two thin lenses with focal lengths f1 and f2, are...Ch. 26 - When an object is placed a distance d0 in front of...Ch. 26 - A Slab of Glass Give a symbolic expression for the...Ch. 26 - Least Time A beam of light propagates from point A...Ch. 26 - The ray of light shown in Figure 26-79 passes from...Ch. 26 - Predict/Calculate A beam of light enters the...Ch. 26 - A converging lens with a focal length in air of f...Ch. 26 - A diverging lens with f = 12.5 cm is made from...Ch. 26 - Calculate the focal length of a lens in water,...Ch. 26 - Suppose a lens is made from fused quartz (glass),...Ch. 26 - Referring to Example 26-5 Suppose the radius of...Ch. 26 - Predict/Calculate Referring to Example 26-5 object...Ch. 26 - Referring to Example 26-18 (a) What object...Ch. 26 - Predict/Calculate Referring to Example 26-18...
Additional Science Textbook Solutions
Find more solutions based on key concepts
83. Which solid has the highest melting point? Why?
a. Ar(s)
b.
c. LiCl(s)
d.
Introductory Chemistry (6th Edition)
The pHactivity profile for glucose-6-phosphate isomerase indicates the participation of a group with a pKa = 6....
Organic Chemistry (8th Edition)
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Another cross in Drosophila involved the recessive, X-linked genes yellow (y), white (w), and cut (ct). A yello...
Concepts of Genetics (12th Edition)
1.14 Classify each of the following as a pure substance or a mixture. If a mixture, indicate whether it is homo...
Chemistry: The Central Science (14th Edition)
Choose the best answer to each of the following. Explain your reasoning. strong evidence for the existence of d...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose a man stands in front of a mm-or as show below. His eyes are 1.65 m above the floor and the top of his head is 0.13 m higher. Find the height above the floor of the top and bottom of the smallest minor in which he can see both the top of his head and his feet. How is this distance related to the man’s height?arrow_forwardA goldfish is swimming at 2.00 cm/s toward the front wall of a rectangular aquarium. What is the apparent speed of the fish measured by an observer looking in from outside the front wall of the tank?arrow_forwardIn Equation 4.4, the parameter looks like an angle but is not an angle that you can measure with a protractor in the physical world. Explain what represents.arrow_forward
- Suppose you are looking down at a highway from a jetliner flying at an altitude of 6.0 km. How far apart must two cars be if you are able to distinguish them? Assume that =550 nm and that the diameter of your pupils is 4.0 mm.arrow_forwardIf the light source in the preceding problem is changed, the angular position of the third maximum is found to be 0.57°. What is the wavelength of light being used now?arrow_forwardElectric room heaters use a concave mirror to reflect infrared (IR) radiation from hot coils. Note that IR radiation follows the same law of reflection as visible light. Given that the mirror has a radius of curvature of 50.0 cm and produces an image of the coils 3.00 m away from the mirror, where are the coils?arrow_forward
- If the apex angle in the previous problem is 20.0° and n = 1.50, what is the value of a?arrow_forwardIn Section 9.6, we described how the speed of light varies with wavelength (or frequency) for transparent solids. But the speed of light in matter is also a function of temperature and pressure. This dependence is most marked for gases and is instrumental in producing such things as mirages and atmospheric refraction, the latter phenomenon being the displacement of an astronomical object (like the Sun or another star) from its true position because of the passage of its light through the atmosphere. Because Earth’s atmosphere is a gaseous mixture and easily compressed, its density is highest near Earth’s surface and gradually declines with altitude. (Refer to the discussion in Section 4.4 and Figure 4.29.) Thus, the speed of light in the atmosphere is lowest near the surface and gradually gets higher, approaching c as one goes farther and farther into space. Using this fact and the law of refraction, sketch the path a light ray from the Sun would follow upon entering Earth’s atmosphere, and predict the apparent position of the Sun relative to its true position (Figure 9.85). What does this tell you about the actual location of the Sun’s disk relative to your local horizon when you see it apparently setting brilliantly in the west in the evening?arrow_forwardSuppose you are using total internal reflection to make an efficient corner reflector. If there is air outside and the incident angle is 45.0 , what must be the minimum index of refraction of the material from which the reflector is made?arrow_forward
- Exp1ain why an object in water always appears to be at a depth shallower than it actually is?arrow_forwardLight rays from the Sun make a 30° angle to the vertical when seen from below the surface of a body of water. At what angle above the horizon is the Sun?arrow_forwardA light ray initially in water enters a transparent substance at an angle of incidence of 37.0, and the transmitted ray is refracted at an angle of 25.0. Calculate the speed of light in the transparent substance.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY