EBK MANUFACTURING ENGINEERING & TECHNOL
7th Edition
ISBN: 8220100793431
Author: KALPAKJIAN
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 26, Problem 45QTP
To determine
Derive an expression for the angular velocity of the wafer shown in Fig. 26.30b as a function of the radius and angular velocity of the pad in chemical-
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Make a list about the process of Mechanical Grinding and another of Reactive Grinding, please be clear in your writing (preferably in digital format) and consider all the corresponding steps
Calculate the material removal rate and electrode feed rate in the electrochemical machining of an
iron surface that is 25 mm × 25 mm in cross-section, using NaCl in water as electrolyte. The gap
between the tool and the work-piece is 0.25 mm. The supply voltage is 12 volt D.C. The specific
resistance of electrolyte is 3 2 cm. Take for iron:
Valency = 2, Atomic weight = 55.85,Density = 7860 kg/m³.
(a)
Figure 1 shows surface roughness and tolerances obtained in Chemical
Machining (CM) and Electrochemical Machining (ECM) process for different
types of electronic products.
Comment on the differences between chemical and electrochemical machining
process in terms of surface roughness and tolerance of the machined product as
illustrated in Figure 1.
0.9
CM
0.8
0.7
Z ECM
0.6
0.5
0.4
0.3
0.2
0.1
Product A
Product B
Product C
Product D
Products
25
E ČM
20
Z ECM
15
10
Product A
Product B
Product C
Product D
Products
Figure 1: Surface roughness and tolerances of various electronic products
Surface roughness, Ra
Tolerance, (t mm x 10)
Chapter 26 Solutions
EBK MANUFACTURING ENGINEERING & TECHNOL
Ch. 26 - What is an abrasive? What are superabrasives?Ch. 26 - How is the size of an abrasive grain related to...Ch. 26 - Why are most abrasives made synthetically?Ch. 26 - Describe the structure of a grinding wheel and its...Ch. 26 - Explain the characteristics of each type of bond...Ch. 26 - What causes grinding sparks in grinding? Is it...Ch. 26 - Define metallurgical burn.Ch. 26 - Define (a) friability, (b) wear flat, (c) grinding...Ch. 26 - What is creep-feed grinding and what are its...Ch. 26 - How is centerless grinding different from...
Ch. 26 - What are the differences between coated and bonded...Ch. 26 - What is the purpose of the slurry in...Ch. 26 - Explain why grinding operations may be necessary...Ch. 26 - Why is there such a wide variety of types, shapes,...Ch. 26 - Prob. 15QLPCh. 26 - The grinding ratio, G, depends on the type of...Ch. 26 - What are the consequences of allowing the...Ch. 26 - Explain why speeds are much higher in grinding...Ch. 26 - Prob. 19QLPCh. 26 - Prob. 20QLPCh. 26 - Prob. 21QLPCh. 26 - Referring to the preceding chapters on processing...Ch. 26 - Explain the reasons that so many deburring...Ch. 26 - What precautions should you take when grinding...Ch. 26 - Prob. 25QLPCh. 26 - What factors could contribute to chatter in...Ch. 26 - Prob. 27QLPCh. 26 - Prob. 28QLPCh. 26 - Describe the effects of a wear flat on the overall...Ch. 26 - What difficulties, if any, could you encounter in...Ch. 26 - Prob. 31QLPCh. 26 - Prob. 32QLPCh. 26 - Prob. 33QLPCh. 26 - Jewelry applications require the grinding of...Ch. 26 - List and explain factors that contribute to poor...Ch. 26 - Calculate the chip dimensions in surface grinding...Ch. 26 - If the strength of the workpiece material is...Ch. 26 - Assume that a surface-grinding operation is being...Ch. 26 - Estimate the percent increase in the cost of the...Ch. 26 - Assume that the energy cost for grinding an...Ch. 26 - It is known that, in grinding, heat checking...Ch. 26 - Prob. 45QTPCh. 26 - With appropriate sketches, describe the principles...Ch. 26 - Prob. 47SDPCh. 26 - Vitrified grinding wheels (also called ceramic...Ch. 26 - Conduct a literature search, and explain how...Ch. 26 - Visit a large hardware store and inspect the...Ch. 26 - Obtain a small grinding wheel or a piece of a...Ch. 26 - In reviewing the abrasive machining processes in...Ch. 26 - Obtain pieces of sandpaper and emery cloth of...Ch. 26 - On the basis of the contents of this chapter,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- manufacturing technology please answer as soon as possiblearrow_forward2. In the electrochemical machining of an iron surface with 20 mm× 20 mm in cross-section, the NaCl in water is adopted as electrolyte. The gap between the tool and workpiece is 0.2 mm. The supply voltage is 15 V DC. The specific resistance of the electrolyte is 2 Q cm. (For iron, valency=2, atomic weight=55.85, and density=7860 kg/m³). Please estimate the material removal rate and the tool feedrate.arrow_forwardWhat is the mechanism material removal in EDM? Explain in detail.arrow_forward
- Please I want answer for this question. Thanksarrow_forwardManufacturers are designing grinding spindles to turn at higher and higher speeds. What is the main reason for this, and what is one drawback of increasing speed? Name 2 reasons why cost increases as finish allowances decrease. Tool temperatures are low at low cutting speeds and high at high cutting speeds, but low again at even higher cutting speeds. Explain why.arrow_forwardDear Tutor please help me pleasearrow_forward
- In plane-strain orthogonal machining, the two main sources of energy dissipation are deformation along the shear plane (~70%) and friction at the tool-chip contact along the rake face (~30%). Consider plane-strain machining of a rigid perfectly-plastic work material whose uniaxial yield stress is 700 MPa, and is independent of strain rate and temperature. A tool of zero-degree rake angle is employed. Measurements showed the (deformed) chip thickness to be twice that of the undeformed chip thickness. Based on the aforementioned distribution of energy, estimate the specific energy for this process.arrow_forwardHelp!arrow_forwardDefine specific energy for plane strain machining (cutting). In plane-strain machỉning, the two main sources of energy dissipation are deformation along the shear plane (~70%) and friction at the tool-chip contact along the rake face (~30%). Consider machining of a rigid perfectly-plastic work material whose uniaxial yield stress is 700 MPa, and is independent of strain rate and temperature. A tool of zero-degree rake angle is employed. Measurements showed the (deformed) chip thickness to be twice that of the undeformed chip thickness. Based on the aforementioned distribution of energy, estimate the specific energy for this process.arrow_forward
- What are the materials and equipment in grinding high speed steel lathe tool bits? Explain.arrow_forwardwould it be difficult to use the machining processes that you havelearnt in this course on rubberlike materials? Provide details explanation on youropinion with good justification, taking into account the differences in term of themechanical, physical and thermal properties of this material as compared to metalDiscuss also any dilliculties that may be encountered in producing the desiredshapes and dimensional accuracies in machining rubberlike materials.arrow_forwardExplain the distinct features of non-conventional machining which gave it superiority over the conventional machining?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Materials Science Mechanical Engineering - Part 3 Corrosion Explained; Author: Mega Mechatronics;https://www.youtube.com/watch?v=Il-abRhrzFY;License: Standard Youtube License