![Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)](https://www.bartleby.com/isbn_cover_images/9781305586871/9781305586871_largeCoverImage.gif)
Concept explainers
In Figure P26.38, a thin converging lens of focal length 14.0 cm forms an image of the square abcd, which is hc = hb = 10.0 cm high and lies between distances of pd = 20.0 cm and pa = 30.0 cm from the lens. Let a′, b′, c′, and d′ represent the respective corners of the image. Let qa represent the image distance for points a′ and b′, qd represent the image distance for points c′ and d′, h′b represent the distance from point b′ to the axis, and h′c represent the height of c′. (a) Find qa, qd, h′b, and h′c. (b) Make a sketch of the image. (c) The area of the object is 100 cm2. By carrying out the following steps, you will evaluate the area of the image. Let q represent the image distance of any point between a′ and d′, for which the object distance is p. Let h′ represent the distance from the axis to the point at the edge of the image between b′ and c′ at image distance q. Demonstrate that
where h′ and q are in centimeters. (d) Explain why the geometric area of the image is given by
(e) Carry out the integration to find the area of the image.
Figure P26.38
(a)
![Check Mark](/static/check-mark.png)
The values of given parameters.
Answer to Problem 38P
The values of the given parameters are
Explanation of Solution
Write the mirror equation for the side a.
Here
Rewrite (I) in terms of
Similarly, write the image distance for side d.
Write the equation for magnification for side b
Here
Rewrite (IV) in terms of
Similarly,
Conclusion:
Substitute
Substitute
Substitute
Substitute
The values of the given parameters are
(b)
![Check Mark](/static/check-mark.png)
Sketch of the image.
Answer to Problem 38P
The image has been drawn
Explanation of Solution
Conclusion:
The image has been drawn
(c)
![Check Mark](/static/check-mark.png)
Prove the given equation.
Answer to Problem 38P
The equation has been proved.
Explanation of Solution
Write the equation for magnification
Rewrite (VII) in terms of
Write the mirror equation in terms of
Substitute (IX) in (VIII)
Conclusion:
Substitute
Hence proved.
(d)
![Check Mark](/static/check-mark.png)
Geometric area of the image.
Answer to Problem 38P
The geometric area of the image is given by
Explanation of Solution
The integral sign suggests that the areas of the small regions are added up to get the whole area. The
Conclusion:
The geometric area of the image is given by
(e)
![Check Mark](/static/check-mark.png)
Area of the image.
Answer to Problem 38P
The area is
Explanation of Solution
Write the equation for area
Substitute (XI) in (XII)
Conclusion:
The area is
Want to see more full solutions like this?
Chapter 26 Solutions
Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)
- No chatgpt plsarrow_forwardhelp me with the experimental set up for the excel i did. the grapharrow_forwardWhich of the following best describes how to calculate the average acceleration of any object? Average acceleration is always halfway between the initial acceleration of an object and its final acceleration. Average acceleration is always equal to the change in velocity of an object divided by the time interval. Average acceleration is always equal to the displacement of an object divided by the time interval. Average acceleration is always equal to the change in speed of an object divided by the time interval.arrow_forward
- The figure shows the velocity versus time graph for a car driving on a straight road. Which of the following best describes the acceleration of the car? v (m/s) t(s) The acceleration of the car is negative and decreasing. The acceleration of the car is constant. The acceleration of the car is positive and increasing. The acceleration of the car is positive and decreasing. The acceleration of the car is negative and increasing.arrow_forwardWhich figure could represent the velocity versus time graph of a motorcycle whose speed is increasing? v (m/s) v (m/s) t(s) t(s)arrow_forwardUnlike speed, velocity is a the statement? Poisition. Direction. Vector. Scalar. quantity. Which one of the following completesarrow_forward
- No chatgpt pls will upvote Already got wrong chatgpt answerarrow_forward3.63 • Leaping the River II. A physics professor did daredevil stunts in his spare time. His last stunt was an attempt to jump across a river on a motorcycle (Fig. P3.63). The takeoff ramp was inclined at 53.0°, the river was 40.0 m wide, and the far bank was 15.0 m lower than the top of the ramp. The river itself was 100 m below the ramp. Ignore air resistance. (a) What should his speed have been at the top of the ramp to have just made it to the edge of the far bank? (b) If his speed was only half the value found in part (a), where did he land? Figure P3.63 53.0° 100 m 40.0 m→ 15.0 marrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forward
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553292/9781337553292_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078807213/9780078807213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168185/9781938168185_smallCoverImage.gif)