
Concept explainers
(a)
The distance between the object and the screen.
(a)

Answer to Problem 66P
The distance between the object and the screen is
Explanation of Solution
Given info: The focal length of the left and right lenses are
Write the expression of thin lens equation for lens 1.
Here,
Substitute
Write the expression for magnification.
Substitute
Write the expression of magnification for a combination of two lenses.
Substitute
Write the expression to calculate the magnification for lens 2.
Substitute
Write the expression of thin lens equation for lens 2.
Here,
Substitute
Substitute
The distance between the object and the screen is,
Substitute
Thus, the distance between the object and the screen is
Conclusion:
Therefore, the distance between the object and the screen is
(b)
The displacement of each lens from its initial position.
(b)

Answer to Problem 66P
The displacement of each lens from its initial position is
Explanation of Solution
Given info: The focal length of the left and right lenses are
Write the expression of thin lens equation for lens 1.
Here,
Substitute
Write the expression of magnification for lens 1.
Substitute
Write the expression of magnification for the combination of lenses.
Substitute
Write the expression to calculate the magnification of lens 2.
Substitute
Write the expression of lens equation for lens 2.
Substitute
Substitute
The distance between the object and the screen is,
Substitute
Solve the above quadratic equation to find the value of
When the value of
The displacement of object is,
Substitute
The displacement of the image is,
When the value of
The displacement of object is,
Substitute
The displacement of the image is,
Thus, the displacement of each lens from its initial position is
Conclusion:
Therefore, the displacement of each lens from its initial position is
(c)
Whether the lens can be displaced by more than one way.
(c)

Answer to Problem 66P
It is possible to displace the lens in more than one way.
Explanation of Solution
Given info: The focal length of the left and right lenses are
Yes the lens can be displaced in more than one way.
The first lens can be displaced
Another way is, the first lens can be moved
Thus, it is possible to displace the lens in more than one way.
Conclusion:
Therefore, it is possible to displace the lens in more than one way.
Want to see more full solutions like this?
Chapter 26 Solutions
Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)
- please answer this asap!!!!arrow_forwardRT = 4.7E-30 18V IT = 2.3E-3A+ 12 38Ω ли 56Ω ли r5 27Ω ли r3 28Ω r4 > 75Ω r6 600 0.343V 75.8A Now figure out how much current in going through the r4 resistor. |4 = unit And then use that current to find the voltage drop across the r resistor. V4 = unitarrow_forward7 Find the volume inside the cone z² = x²+y², above the (x, y) plane, and between the spheres x²+y²+z² = 1 and x² + y²+z² = 4. Hint: use spherical polar coordinates.arrow_forward
- ганм Two long, straight wires are oriented perpendicular to the page, as shown in the figure(Figure 1). The current in one wire is I₁ = 3.0 A, pointing into the page, and the current in the other wire is 12 4.0 A, pointing out of the page. = Find the magnitude and direction of the net magnetic field at point P. Express your answer using two significant figures. VO ΜΕ ΑΣΦ ? Figure P 5.0 cm 5.0 cm ₁ = 3.0 A 12 = 4.0 A B: μΤ You have already submitted this answer. Enter a new answer. No credit lost. Try again. Submit Previous Answers Request Answer 1 of 1 Part B X Express your answer using two significant figures. ΜΕ ΑΣΦ 0 = 0 ? below the dashed line to the right P You have already submitted this answer. Enter a new answer. No credit lost. Try again.arrow_forwardAn infinitely long conducting cylindrical rod with a positive charge λ per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of −2λ and radius r1, as shown in the figure. What is σinner, the surface charge density (charge per unit area) on the inner surface of the conducting shell? What is σouter, the surface charge density on the outside of the conducting shell? (Recall from the problem statement that the conducting shell has a total charge per unit length given by −2λ.)arrow_forwardA small conducting spherical shell with inner radius aa and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. What's the total charge on the inner surface of the small shell? What's the total charge on the outer surface of the small shell? What's the total charge on the inner surface of the large shell? What's the total charge on the outer surface of the large shell?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill





