A glass sheet measuring 10.0 cm × 25.0 cm is covered by a very thin opaque coating. In the middle of this sheet is a thin, straight scratch 0.00125 mm thick, as shown in Figure 26.45 . The sheet is totally immersed beneath the surface of a liquid having an index of refraction of 1.45. Monochromatic light strikes the sheet perpendicular to its surface and passes through the scratch. A screen is placed under the liquid a distance 30.0 cm away from the sheet and parallel to it. You observe that the first dark fringes on either side of the central bright fringe on this screen are 22.4 cm apart. What is the wavelength of the light in air? Figure 26.45 Problem 32.
A glass sheet measuring 10.0 cm × 25.0 cm is covered by a very thin opaque coating. In the middle of this sheet is a thin, straight scratch 0.00125 mm thick, as shown in Figure 26.45 . The sheet is totally immersed beneath the surface of a liquid having an index of refraction of 1.45. Monochromatic light strikes the sheet perpendicular to its surface and passes through the scratch. A screen is placed under the liquid a distance 30.0 cm away from the sheet and parallel to it. You observe that the first dark fringes on either side of the central bright fringe on this screen are 22.4 cm apart. What is the wavelength of the light in air? Figure 26.45 Problem 32.
A glass sheet measuring 10.0 cm × 25.0 cm is covered by a very thin opaque coating. In the middle of this sheet is a thin, straight scratch 0.00125 mm thick, as shown in Figure 26.45. The sheet is totally immersed beneath the surface of a liquid having an index of refraction of 1.45. Monochromatic light strikes the sheet perpendicular to its surface and passes through the scratch. A screen is placed under the liquid a distance 30.0 cm away from the sheet and parallel to it. You observe that the first dark fringes on either side of the central bright fringe on this screen are 22.4 cm apart. What is the wavelength of the light in air?
Example
Two charges, one with +10 μC of charge, and
another with - 7.0 μC of charge are placed in
line with each other and held at a fixed distance
of 0.45 m. Where can you put a 3rd charge of +5
μC, so that the net force on the 3rd charge is
zero?
*
Coulomb's Law Example
Three charges are positioned as seen below. Charge
1 is +2.0 μC and charge 2 is +8.0μC, and charge 3 is -
6.0MC.
What is the magnitude and the direction of the force
on charge 2 due to charges 1 and 3?
93
kq92
F
==
2
r13 = 0.090m
91
r12 = 0.12m
92
Coulomb's Constant: k = 8.99x10+9 Nm²/C²
✓
Campbell Essential Biology with Physiology (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.