
College Physics (10th Edition)
10th Edition
ISBN: 9780321902788
Author: Hugh D. Young, Philip W. Adams, Raymond Joseph Chastain
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 26, Problem 19P
The lenses of a particular set of binoculars have a coating with index of refraction n = 1.38, and the glass itself has n = 1.52. If the lenses reflect a wavelength of 525 nm the most strongly, what is the minimum thickness of the coating?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Ho propel
9-kN t.
Boat
27. An elevator accelerates downward at 2.4 m/s². What force does
the elevator's floor exert on a 52-kg passenger?
16.
17
A CUIN
Starting from rest and undergoing constant acceleration, a 940-kg
racing car covers 400 m in 4.95 s. Find the force on the car.
----- vertical diste
Section 4.6 Newton's Third Law
31. What upward gravitational force does a 5600-kg elephant exert
on Earth?
Chapter 26 Solutions
College Physics (10th Edition)
Ch. 26 - Could an experiment similar to Youngs two-slit...Ch. 26 - You shine monochromatic light on two narrow slits...Ch. 26 - Would the headlights of a distant car form a...Ch. 26 - If a two-slit interference experiment were done...Ch. 26 - Prob. 6CQCh. 26 - Prob. 7CQCh. 26 - Around harbors, where oil from boat engines is on...Ch. 26 - What happens to the width of the central bright...Ch. 26 - A very thin soap film (n = 1.33), whose thickness...Ch. 26 - Suppose monochromatic light with a wavelength A...
Ch. 26 - Optical telescopes having a principal mirror only...Ch. 26 - Two sources of waves are at A and B in Figure...Ch. 26 - Two sources of waves are at A and B in Figure...Ch. 26 - To obtain the greatest resolution from a...Ch. 26 - A monochromatic beam of laser light falls on a...Ch. 26 - When a thin oil film spreads out on a puddle...Ch. 26 - A laser beam of wavelength 500 nm is shone through...Ch. 26 - A film contains a single thin slit of width a When...Ch. 26 - Light of wavelength A strikes a pane of glass of...Ch. 26 - Two thin parallel slits are a distance d apart....Ch. 26 - Laser light of wavelength A passes through a thin...Ch. 26 - A light oeam st'ikes a pane of glass as shown in...Ch. 26 - Light of wavelength and frequency f passes...Ch. 26 - Prob. 1PCh. 26 - A person with a radio-wave receiver starts out...Ch. 26 - Radio interference. Two radio antennas A and B...Ch. 26 - Two speakers that are 10.0 m apart produce...Ch. 26 - Suppose that the situation is the same as in the...Ch. 26 - Coherent light of wavelength 525 nm passes through...Ch. 26 - Coherent light from a sodium-vapor lamp is passed...Ch. 26 - Young's experiment is performed with light of...Ch. 26 - Coherent light of frequency 6 32 1014 Hz passes...Ch. 26 - Coherent light with wavelength 600 nm passes...Ch. 26 - Two slits spaced 0.450 mm apart are placed 75.0 cm...Ch. 26 - Coherent light that contains two wavelengths 660...Ch. 26 - Two thin parallel slits that are 0.0116 mm apart...Ch. 26 - The walls of a soap bubble have about the same...Ch. 26 - What is the thinnest soap film (excluding the case...Ch. 26 - A thin film of polystyrene of refractive index...Ch. 26 - Conserving energy. The lead architect on the...Ch. 26 - Nonglare glass. When viewing a piece of art that...Ch. 26 - The lenses of a particular set of binoculars have...Ch. 26 - A plate of glass 9.00 cm long is placed in contact...Ch. 26 - Two rectangular pieces of plane glass are laid one...Ch. 26 - A researcher measures the thickness of a layer of...Ch. 26 - Compact disc player. A compact disc (CD) is read...Ch. 26 - A beam of laser light of wavelength 632.8 nm fails...Ch. 26 - Parallel rays of green mercury light with a...Ch. 26 - Parallel light rays with a wavelength of 600 nm...Ch. 26 - Monochromatic light from a distant source is...Ch. 26 - Red light of wavelength 633 nm from a helium-neon...Ch. 26 - Light of wavelength 633 nm from a distant source...Ch. 26 - Doorway diffraction. Diffraction occurs for all...Ch. 26 - Light of wavelength 585 nm falls on a slit 0 0666...Ch. 26 - A glass sheet measuring 10.0 cm 25.0 cm is...Ch. 26 - A laser beam of unknown wavelength passes through...Ch. 26 - A laser beam of wavelength 600.0 nm is incident...Ch. 26 - When laser light of wavelength 632.8 nm passes...Ch. 26 - A diffraction grating has 5580 lines/cm When a...Ch. 26 - Monochromatic light is at normal incidence on a...Ch. 26 - Set Up: The maxima are located by dsin= m, where d...Ch. 26 - Light of wavelength 631 nm passes through a...Ch. 26 - If a diffraction grating produces a third-order...Ch. 26 - A converging lens 7.20 cm in diameter has a focal...Ch. 26 - A reflecting telescope is used to observe two...Ch. 26 - Two satellites at an altitude of 1200 km are...Ch. 26 - Resolution of telescopes. Due to blurring caused...Ch. 26 - Resolution of the eye, I. Even if the lenses of...Ch. 26 - Resolution of the eye, II. The maximum resolution...Ch. 26 - Spy satellites? Assume that a spy satellite in...Ch. 26 - Two identical audio speakers connected to the same...Ch. 26 - Suppose you illuminate two thin slits by...Ch. 26 - Coating eyeglass lenses. Eyeglass lenses can be...Ch. 26 - Sensitive eyes. You have just put some medical...Ch. 26 - || A wildlife photographer uses a moderate...Ch. 26 - Thickness of human hair. Although we have...Ch. 26 - An oil tanker spills a large amount of oil (n = 1...Ch. 26 - A thin glass slide (n = 1.53) that is 0.485 m...Ch. 26 - Searching for planets around other stars. If an...Ch. 26 - You need a diffraction grating that will disperse...Ch. 26 - Set Up: Interference occurs due to the path...Ch. 26 - A physics student performs Youngs double-slit...Ch. 26 - The professor then adjusts the apparatus. The...Ch. 26 - The professor returns the apparatus to the...Ch. 26 - The professor again returns the apparatus to its...Ch. 26 - The professor once again returns the apparatus to...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Match the following examples of mutagens. Column A Column B ___a. A mutagen that is incorporated into DNA in pl...
Microbiology: An Introduction
16. You have six 1.0 k? resistors. How can you connect them to produce a total equivalent resistance of 1.5 k??...
College Physics: A Strategic Approach (3rd Edition)
27. Consider the reaction.
Express the rate of the reaction in terms of the change in concentration of each of...
Chemistry: Structure and Properties (2nd Edition)
79. Complete and balance each acid-base reaction.
a.
b.
c.
Introductory Chemistry (6th Edition)
Which one of the following is not a fuel produced by microorganisms? a. algal oil b. ethanol c. hydrogen d. met...
Microbiology: An Introduction
What two body structures contain flexible elastic cartilage?
Anatomy & Physiology (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 64. Two springs have the same unstretched length but different spring constants, k₁ and k₂. (a) If they're connected side by side and stretched a distance x, as shown in Fig. 4.24a, show that the force exerted by the combination is (k₁ + k₂)x. (b) If they're con- nected end to end (Fig. 4.24b) and the combination is stretched a distance x, show that they exert a force k₁k2x/(k₁ + k₂). www (a) FIGURE 4.24 Problem 65 www (b)arrow_forward65. Although we usually write Newton's second law for one-dimensional motion in the form F =ma, which holds when mass is constant, d(mv) a more fundamental version is F = . Consider an object dt whose mass is changing, and use the product rule for derivatives to show that Newton's law then takes the form F dm = ma + v dtarrow_forwardIf a proton is located on the x-axis in some coordinate system at x0 = -3.2 x 10-5 meters, what is the x-component of the Electric Field due to this proton at a position x = +3.2 x 10-5 meters and on the x axis as the y-axis is 0 giving a number of Newtons/Coulomb?arrow_forward
- Consider a single square loop of wire of area A carrying a current I in a uniform magnetic field of strength B. The field is pointing directly up the page in the plane of the page. The loop is oriented so that the plane of the loop is perpendicular to the plane of the page (this means that the normal vector for the loop is always in the plane of the page!). In the illustrations below the magnetic field is shown in red and the current through the current loop is shown in blue. The loop starts out in orientation (i) and rotates clockwise, through orientations (ii) through (viii) before returning to (i). (i) Ø I N - - I N - (iii) (iv) (v) (vii) (viii) a) [3 points] For each of the eight configurations, draw in the magnetic dipole moment vector μ of the current loop and indicate whether the torque on the dipole due to the magnetic field is clockwise (CW), counterclockwise (CCW), or zero. In which two orientations will the loop experience the maximum magnitude of torque? [Hint: Use the…arrow_forwardPlease help with calculating the impusle, thanks! Having calculated the impact and rebound velocities of the ping pong ball and the tennis ball calculate the rebounding impulse: 1.Measure the weight of the balls and determine their mass. Tennis ball: 0.57 kg Ping Pong Ball: 0.00246 kg The impulse, I, is equal to the change in momentum, Pf-Pi. Note the sign change, i.e., going down is negative and up is positive. The unit for momentum is kg-m/s. The change is momentum, impulse, is often givens the equivalent unit of N-S, Newton-Secondarrow_forward5. Three blocks, each with mass m, are connected by strings and are pulled to the right along the surface of a frictionless table with a constant force of magnitude F. The tensions in the strings connecting the masses are T1 and T2 as shown. m T1 T2 F m m How does the magnitude of tension T₁ compare to F? A) T₁ = F B) T₁ = (1/2)F C) T₁ = (1/3)F D) T₁ = 2F E) T₁ = 3Farrow_forward
- Using Coulombs Law, what is the magnitude of the electrical force between two protons located 1 meter apart from each other in Newtons?arrow_forwardCalculate the magnitude of the gravitational force between 2 protons located 1 meter apart from each other in Newtons using Newton's Law of Universal Gravitation.arrow_forwardIf the metal sphere on the Van de Graff has a charge of 0.14 Coulombs and the person has a mass of 62 kg, how much excess charge would the person need in order to levitate at a distance 25 cm from the center of the charged metal sphere if there is a distance 25 cm from the person to the sphere using Coulomb's Law to calculate the electrical force. Give your answer as the number of Coulombs (with no unit label, as usual).arrow_forward
- A balloon is rubbed on a sweater, giving the balloon a negative charge by adding an extra 3.9 x 107 electrons compared to its neutral state. What is the magnitude of the net charge on the balloon, in Coulombs?arrow_forwardA ping pong ball and a tennis ball are dropped and there is a very small gap between them when the tennis ball hits the floor. Indicate the directions of the momentums of the ping pong ball and the tennis ball after the tennis ball collides with the floor, but before the balls collide with each other. (Drawing a diagram may be helpful.)arrow_forwardDescribe how the momentum of a single ball changes as it free falls from a height of approximately 1 m, collides with a hard floor, and rebounds.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY