College Physics (10th Edition)
10th Edition
ISBN: 9780321902788
Author: Hugh D. Young, Philip W. Adams, Raymond Joseph Chastain
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 26, Problem 10CQ
A very thin soap film (n = 1.33), whose thickness is much less than a
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Hi can u please solve
6. Bending a lens in OpticStudio or OSLO. In either package, create a BK7 singlet lens of 10 mm semi-diameter
and with 10 mm thickness. Set the wavelength to the (default) 0.55 microns and a single on-axis field point at
infinite object distance. Set the image distance to 200 mm. Make the first surface the stop insure that the lens
is fully filled (that is, that the entrance beam has a radius of 10 mm). Use the lens-maker's equation to
calculate initial glass curvatures assuming you want a symmetric, bi-convex lens with an effective focal length
of 200 mm. Get this working and examine the RMS spot size using the "Text" tab of the Spot Diagram analysis
tab (OpticStudio) or the Spd command of the text widnow (OSLO). You should find the lens is far from
diffraction limited, with a spot size of more than 100 microns.
Now let's optimize this lens. In OpticStudio, create a default merit function optimizing on spot size.Then insert
one extra line at the top of the merit function. Assign the…
No chatgpt pls will upvote
Already got wrong chatgpt answer .
Chapter 26 Solutions
College Physics (10th Edition)
Ch. 26 - Could an experiment similar to Youngs two-slit...Ch. 26 - You shine monochromatic light on two narrow slits...Ch. 26 - Would the headlights of a distant car form a...Ch. 26 - If a two-slit interference experiment were done...Ch. 26 - Prob. 6CQCh. 26 - Prob. 7CQCh. 26 - Around harbors, where oil from boat engines is on...Ch. 26 - What happens to the width of the central bright...Ch. 26 - A very thin soap film (n = 1.33), whose thickness...Ch. 26 - Suppose monochromatic light with a wavelength A...
Ch. 26 - Optical telescopes having a principal mirror only...Ch. 26 - Two sources of waves are at A and B in Figure...Ch. 26 - Two sources of waves are at A and B in Figure...Ch. 26 - To obtain the greatest resolution from a...Ch. 26 - A monochromatic beam of laser light falls on a...Ch. 26 - When a thin oil film spreads out on a puddle...Ch. 26 - A laser beam of wavelength 500 nm is shone through...Ch. 26 - A film contains a single thin slit of width a When...Ch. 26 - Light of wavelength A strikes a pane of glass of...Ch. 26 - Two thin parallel slits are a distance d apart....Ch. 26 - Laser light of wavelength A passes through a thin...Ch. 26 - A light oeam st'ikes a pane of glass as shown in...Ch. 26 - Light of wavelength and frequency f passes...Ch. 26 - Prob. 1PCh. 26 - A person with a radio-wave receiver starts out...Ch. 26 - Radio interference. Two radio antennas A and B...Ch. 26 - Two speakers that are 10.0 m apart produce...Ch. 26 - Suppose that the situation is the same as in the...Ch. 26 - Coherent light of wavelength 525 nm passes through...Ch. 26 - Coherent light from a sodium-vapor lamp is passed...Ch. 26 - Young's experiment is performed with light of...Ch. 26 - Coherent light of frequency 6 32 1014 Hz passes...Ch. 26 - Coherent light with wavelength 600 nm passes...Ch. 26 - Two slits spaced 0.450 mm apart are placed 75.0 cm...Ch. 26 - Coherent light that contains two wavelengths 660...Ch. 26 - Two thin parallel slits that are 0.0116 mm apart...Ch. 26 - The walls of a soap bubble have about the same...Ch. 26 - What is the thinnest soap film (excluding the case...Ch. 26 - A thin film of polystyrene of refractive index...Ch. 26 - Conserving energy. The lead architect on the...Ch. 26 - Nonglare glass. When viewing a piece of art that...Ch. 26 - The lenses of a particular set of binoculars have...Ch. 26 - A plate of glass 9.00 cm long is placed in contact...Ch. 26 - Two rectangular pieces of plane glass are laid one...Ch. 26 - A researcher measures the thickness of a layer of...Ch. 26 - Compact disc player. A compact disc (CD) is read...Ch. 26 - A beam of laser light of wavelength 632.8 nm fails...Ch. 26 - Parallel rays of green mercury light with a...Ch. 26 - Parallel light rays with a wavelength of 600 nm...Ch. 26 - Monochromatic light from a distant source is...Ch. 26 - Red light of wavelength 633 nm from a helium-neon...Ch. 26 - Light of wavelength 633 nm from a distant source...Ch. 26 - Doorway diffraction. Diffraction occurs for all...Ch. 26 - Light of wavelength 585 nm falls on a slit 0 0666...Ch. 26 - A glass sheet measuring 10.0 cm 25.0 cm is...Ch. 26 - A laser beam of unknown wavelength passes through...Ch. 26 - A laser beam of wavelength 600.0 nm is incident...Ch. 26 - When laser light of wavelength 632.8 nm passes...Ch. 26 - A diffraction grating has 5580 lines/cm When a...Ch. 26 - Monochromatic light is at normal incidence on a...Ch. 26 - Set Up: The maxima are located by dsin= m, where d...Ch. 26 - Light of wavelength 631 nm passes through a...Ch. 26 - If a diffraction grating produces a third-order...Ch. 26 - A converging lens 7.20 cm in diameter has a focal...Ch. 26 - A reflecting telescope is used to observe two...Ch. 26 - Two satellites at an altitude of 1200 km are...Ch. 26 - Resolution of telescopes. Due to blurring caused...Ch. 26 - Resolution of the eye, I. Even if the lenses of...Ch. 26 - Resolution of the eye, II. The maximum resolution...Ch. 26 - Spy satellites? Assume that a spy satellite in...Ch. 26 - Two identical audio speakers connected to the same...Ch. 26 - Suppose you illuminate two thin slits by...Ch. 26 - Coating eyeglass lenses. Eyeglass lenses can be...Ch. 26 - Sensitive eyes. You have just put some medical...Ch. 26 - || A wildlife photographer uses a moderate...Ch. 26 - Thickness of human hair. Although we have...Ch. 26 - An oil tanker spills a large amount of oil (n = 1...Ch. 26 - A thin glass slide (n = 1.53) that is 0.485 m...Ch. 26 - Searching for planets around other stars. If an...Ch. 26 - You need a diffraction grating that will disperse...Ch. 26 - Set Up: Interference occurs due to the path...Ch. 26 - A physics student performs Youngs double-slit...Ch. 26 - The professor then adjusts the apparatus. The...Ch. 26 - The professor returns the apparatus to the...Ch. 26 - The professor again returns the apparatus to its...Ch. 26 - The professor once again returns the apparatus to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Use the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: A Incident ray at A Note: This diagram is not to scale. Air (n = 1.00) Water (n = 1.34) Barrow_forwardUse the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: A Incident ray at A Note: This diagram is not to scale. Air (n = 1.00) Water (n = 1.34) Barrow_forwardGood explanation it sure experts solve it.arrow_forward
- No chatgpt pls will upvote Asaparrow_forwardA satellite has a mass of 100kg and is located at 2.00 x 10^6 m above the surface of the earth. a) What is the potential energy associated with the satellite at this loction? b) What is the magnitude of the gravitational force on the satellite?arrow_forwardNo chatgpt pls will upvotearrow_forward
- Correct answer No chatgpt pls will upvotearrow_forwardStatistical thermodynamics. The number of imaginary replicas of a system of N particlesa) cannot be greater than Avogadro's numberb) must always be greater than Avogadro's number.c) has no relation to Avogadro's number.arrow_forwardLab-Based Section Use the following information to answer the lab based scenario. A student performed an experiment in an attempt to determine the index of refraction of glass. The student used a laser and a protractor to measure a variety of angles of incidence and refraction through a semi-circular glass prism. The design of the experiment and the student's results are shown below. Angle of Incidence (°) Angle of Refraction (º) 20 11 30 19 40 26 50 31 60 36 70 38 2a) By hand (i.e., without using computer software), create a linear graph on graph paper using the student's data. Note: You will have to manipulate the data in order to achieve a linear function. 2b) Graphically determine the index of refraction of the semi-circular glass prism, rounding your answer to the nearest hundredth.arrow_forward
- Use the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forwardUse the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forwardNo chatgpt pls will upvotearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Laws of Refraction of Light | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4l2thi5_84o;License: Standard YouTube License, CC-BY