(a)
What is the minimum speed the spaceship will need for the captain to be no more than 60 years old at arrival in December 2009 the discovery was announced of a planet that may have a large amount of water and hence would be a good candidate for possible life. The planet, GJ 1214b, orbits a small star that is 42 light years from Earth. In the future we might decide to send some astronauts to explore the planet. When they arrive there, we want them to be young enough to perform tests. Suppose that the captain is 25 years old at launch time?
Explanation of Solution
Calculation:
At rest, the half-life of a certain radioisotope is
A 25-year-old captain pilots a spaceship to a planet that is
Conclusion:
Minimum speed the spaceship will need for the captain to be no more than 60 years old at arrival in December 2009 = 0.77c
(b)
How many years after launch from Earth will it be when the signal arrives at Earth as soon as the spaceship arrives at the planet, the captain has orders to send a radio signal to Earth to notify Mission Control that the trip was successful.? You can ignore acceleration times and any motion of Earth and GJ 1214b.
Explanation of Solution
Calculation:
Years after launch from Earth will it be when the signal arrives at Earth as soon as the spaceship arrives at the planet = 97 ly
Conclusion:
Years after launch from Earth will it be when the signal arrives at Earth as soon as the spaceship arrives at the planet = 97 ly
Want to see more full solutions like this?
Chapter 25 Solutions
COLLEGE PHYSICS
- No chatgpt pls will upvotearrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forward་ The position of a particle is described by r = (300e 0.5t) mm and 0 = (0.3t²) rad, where t is in seconds. Part A Determine the magnitude of the particle's velocity at the instant t = 1.5 s. Express your answer to three significant figures and include the appropriate units. v = Value Submit Request Answer Part B ? Units Determine the magnitude of the particle's acceleration at the instant t = 1.5 s. Express your answer to three significant figures and include the appropriate units. a = Value A ? Unitsarrow_forward
- Solve and answer the question correctly please. Thank you!!arrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forwardA spiral transition curve is used on railroads to connect a straight portion of the track with a curved portion. (Figure 1) Part A v = v₁ft/s 600 ft y = (106) x³ If the spiral is defined by the equation y = (106)³, where x and y are in feet, determine the magnitude of the acceleration of a train engine moving with a constant speed of v₁ = 30 ft/s when it is at point x = 600 ft. Express your answer to three significant figures and include the appropriate units. ? a = Value Unitsarrow_forward
- When the motorcyclist is at A, he increases his speed along the vertical circular path at the rate of = (0.3t) ft/s², where t is in seconds. Take p = 360 ft. (Figure 1) Part A 60° Ρ B If he starts from rest at A, determine the magnitude of his velocity when he reaches B. Express your answer to three significant figures and include the appropriate units. v = Value Submit Request Answer ་ Part B ? Units If he starts from rest at A, determine the magnitude of his acceleration when he reaches B. Express your answer to three significant figures and include the appropriate units. 11 ? a = Value Unitsarrow_forwardThe car starts from rest at s = 0 and increases its speed at a₁ = 7 m/s². (Figure 1) Part A = 40 m Determine the time when the magnitude of acceleration becomes 20 m/s². Express your answer to three significant figures and include the appropriate units. ? t = Value Units Part B At what position s does this occur? Express your answer to three significant figures and include the appropriate units. s = Value Submit Request Answer ? Unitsarrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning