Concept explainers
(a)
How much time would light, moving at speed c, need to travel from the partially silvered plate to one mirror and back again, suppose that the distance in the Michelson-Morley experiment from the partially silvered plate to either mirror is 20,000 m?
Explanation of Solution
Given info:
Formula used:
Calculation:
The Michelson−Morley experiment attempted to measure a difference between light travel times in two perpendicular legs of an interferometer: One leg was situated parallel to the ether wind and the other perpendicular to the ether wind. For the "parallel leg" of the interferometer, we need to calculate the speed of the light traveling with the wind and against the wind; the round-trip time on this leg is equal to the sum of the times of each one-way trip. For the "perpendicular leg," we need to calculate the component of the
Parallel time:
Perpendicular time:
Time difference between legs:
Speed:
Gamma:
Time difference between legs:
Conclusion:
Time difference between legs
(b)
How much additional time would be required if the ether existed, if the Galilean velocity transformation were valid, and if Earth moved relative to the ether along the direction from the partially silvered plate to this mirror at speed at 0.01c?
Explanation of Solution
Given info:
Formula used:
Calculation:
Gamma:
Time difference between legs:
Conclusion:
Time difference between legs
(c)
How much additional time would be required if the ether existed, if the Galilean velocity transformation were valid, and if Earth moved relative to the ether along the direction from the partially silvered plate to this mirror at speed at 0.1c?
Explanation of Solution
Given info:
Formula used:
Calculation:
Gamma:
Time difference between legs:
Conclusion:
Time difference between legs
(d)
How much additional time would be required if the ether existed, if the Galilean velocity transformation were valid, and if Earth moved relative to the ether along the direction from the partially silvered plate to this mirror at speed at 0.5c?
Explanation of Solution
Given info:
Formula used:
Calculation:
Gamma:
Time difference between legs:
Conclusion:
Time difference between legs
(e)
How much additional time would be required if the ether existed, if the Galilean velocity transformation were valid, and if Earth moved relative to the ether along the direction from the partially silvered plate to this mirror at speed at 0.9c?
Explanation of Solution
Given info:
Formula used:
Calculation:
Gamma:
Time difference between legs:
Conclusion:
Time difference between legs
Want to see more full solutions like this?
Chapter 25 Solutions
COLLEGE PHYSICS
- Suppose youre an astronaut being paid according to the time you spend traveling in space. You take a long voyage traveling at a speed near that of light. Upon your return to Earth, youre asked how youd like to be paid: according to the time elapsed on a clock on Earth or according to your ships clock. To maximize your paycheck, which should you choose? (a) The Earth clock (b) The ship's clock (c) Either clock because it doesnt make a differencearrow_forwardTwo astronomical events are observed to occur at a time of 0.30 s apart and a distance separation of 2.0109m from each other. How fast must a spacecraft travel from the site of one event toward the other to make the events occur at the same time when measured in the frame of reference of the spacecraft?arrow_forwardAn Earth satellite used in the Global Positioning System moves in a circular orbit with period 11 h 58 min. (a) Determine the radius of its orbit. (b) Determine its speed. (c) The satellite contains an oscillator producing the principal nonmilitary GPS signal. Its frequency is 1 575.42 MHz in the reference frame of the satellite. When it is received on the Earths surface, what is the fractional change in this frequency due to time dilation, as described by special relativity? (d) The gravitational blueshift of the frequency according to general relativity is a separate effect. The magnitude of that fractional change is given by ff=Ugmc2 where Ug/m is the change in gravitational potential energy per unit mass between the two points at which the signal is observed. Calculate this fractional change in frequency. (e) What is the overall fractional change in frequency? Superposed on both of these relativistic effects is a Doppler shift that is generally much larger. It can be a redshift or a blueshift, depending on the motion of a particular satellite relative to a GPS receiver (Fig. P1.39).arrow_forward
- (a) How fast would an athlete need to be running for a 100-m race to look 100 yd long? (b) Is the answer consistent with the fact that relativistic effects are difficult to observe in ordinary circumstances? Explain.arrow_forward(a) All but the closest galaxies are receding from our own Milky Way Galaxy. If a galaxy 12.0109ly ly away is receding from us at 0. 0.900c, at what velocity relative to us must we send an exploratory probe to approach the other galaxy at 0.990c, as measured from that galaxy? (b) How long will it take the probe to reach the other galaxy as measured from the Earth? You may assume that the velocity of the other galaxy remains constant. (c) How long will it then take for a radio signal to be beamed back? (All of this is possible in principle, but not practical.)arrow_forward6. (i) The lifetime of a particle in its own frame of reference is 25.0 ns. (This is its proper lifetime). • If the particle moves with speed 0.95c with respect to the Earth, what is its lifetime as measured by an observer at rest on Earth?. • What is the average distance it travels before decaying as measured by an observer at rest on Earth in cm? (ii) Let a rod of length Lo makes an angle 0 relative to the í -axis and let it moves with speed v = 0.8c along the horizontal direction. • Find the length of the rod as measured by a stationary observer for 0, = 30 and 60 • Find the angle 0 the rod makes with the x -axis in terms of 0o.arrow_forward
- 3- a) The distance to Alpha Centauri (the nearest large star to Earth) is 4.37 Ly (Light Years). What is the distance in miles (given that one Ly = 5.88 x 1012 miles?) b) Present rocket ship speeds are roughly 100,000 miles per hour, which is the same as 8.766 x 108 miles per year. At this speed, and using the distance you calculated in (a), how many years would it take to travel to Alpha Centauri?arrow_forward• * * You embark on a round-trip journey to a star 11 light-years away, as measured in Earth's reference frame. You travel at a constant speed outbound, turn around rapidly, and travel back at constant speed. If the round trip takes 15 years by your clock, (a) how fast do you travel and (b) what s the round-trip time as measured on Earth!arrow_forwardA pair of computer-interfaced photogates can be used to accurately measure the time interval for an object to break the beam of one photogate to another. If you wanted to know the speed of the object, what additional information would you need? Explain.arrow_forward
- special relativity • A) Find the value of y for the following situation. An astronaut measures the length of her spaceship to be 25.0 m, while an Earth- bound observer measures it to be 100 m. (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent? • Solution (a) y = 0.250. (b)It is unreasonable because the value of y is less than one. This opposed the idea of length contraction. © It will give imaginary value. The observer must measure the ship 25m, while the astronaut measures her ship 100m.arrow_forwardtyarrow_forward•34 The speeds of 22 particles are as follows (N, represents the number of particles that have speed v,): 2 4 6 4.0 v, (cm/s) 1.0 2.0 3.0 2 N, 5.0 What are (a) vavg. (b) Vrms, and (c) vp?arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning