COLLEGE PHYSICS
COLLEGE PHYSICS
2nd Edition
ISBN: 9781464196393
Author: Freedman
Publisher: MAC HIGHER
bartleby

Concept explainers

Question
Book Icon
Chapter 25, Problem 29QAP
To determine

(a)

A graph of ? versus v/c and determine the maximum value of v/c for which ? is less than 1% larger than unity (1.0)

Expert Solution
Check Mark

Answer to Problem 29QAP

COLLEGE PHYSICS, Chapter 25, Problem 29QAP , additional homework tip  1

And, maximum value of v/c for which ? is less than 1% larger than unity (1.0) is 0.14

Explanation of Solution

Given:

    v/c?v/c?
    010.71.40028
    0.11.0050380.81.666667
    0.21.0206210.92.294157
    0.31.0482850.997.088812
    0.41.0910890.99922.36627
    0.51.1547010.999970.71245
    0.61.25

Graph:

From the given values, we can draw graph.

COLLEGE PHYSICS, Chapter 25, Problem 29QAP , additional homework tip  2

Formula used:

Relativistic gamma:

  γ=11v2c2

After rearranging

  (vc)=11γ2

Calculation:

Maximum value of v/c for which ? is less than 1% larger than unity (1.0)

So, 0.00999 < 0.01 (1 % of unity)

At, γ=1.00999

  (vc)=11γ2=11(1.00999)2=0.14

Conclusion:

Maximum value of v/c for which ? is less than 1% larger than unity (1.0) is 0.14

To determine

(b)

What numerical value does the slope of your graph take at v/c = 0.1, v/c = 0.5, v/c = 0.9, v/c = 0.999?

Expert Solution
Check Mark

Answer to Problem 29QAP

At v/c = 0.1, slope = 0.101

At v/c = 0.5, slope = 0.768

At v/c = 0.9, slope = 10.867

At v/c = 0.999, slope = 11177.54

Explanation of Solution

Formula used:

Relativistic gamma:

  γ=11v2c2

  [y(x)=11 x 2diffrentiatingw.r.txgivesslopeoftheequationdydx=x( 1x2) 3 2]

Similarly,

  slope=dγd(vc)=(vc)(1 v2 c2 )32

Calculation:

  slope(atvc=0.1)=(vc)(1 v2 c2 )32=(0.1)(1 0.12)32=0.1015

  slope(atvc=0.5)=(vc)(1 v2 c2 )32=(0.5)(1 (0.5 )2)32=0.7698

  slope(atvc=0.9)=(vc)(1 v2 c2 )32=(0.9)(1 (0.9 )2)32=10.867

  slope(atvc=0.999)=(vc)(1 v2 c2 )32=(0.999)(1 (0.999 )2)32=11177.54

Conclusion:

Thus, at v/c = 0.1, slope = 0.101

At v/c = 0.5, slope = 0.768

At v/c = 0.9, slope = 10.867

At v/c = 0.999, slope = 11177.54

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A 1.40-kg object slides to the right on a surface having a coefficient of kinetic friction 0.250 (Figure a). The object has a speed of v₁ = 3.50 m/s when it makes contact with a light spring (Figure b) that has a force constant of 50.0 N/m. The object comes to rest after the spring has been compressed a distance d (Figure c). The object is then forced toward the left by the spring (Figure d) and continues to move in that direction beyond the spring's unstretched position. Finally, the object comes to rest a distance D to the left of the unstretched spring (Figure e). d m v=0 -D- www (a) Find the distance of compression d (in m). m (b) Find the speed v (in m/s) at the unstretched position when the object is moving to the left (Figure d). m/s (c) Find the distance D (in m) where the object comes to rest. m (d) What If? If the object becomes attached securely to the end of the spring when it makes contact, what is the new value of the distance D (in m) at which the object will come to…
As shown in the figure, a 0.580 kg object is pushed against a horizontal spring of negligible mass until the spring is compressed a distance x. The force constant of the spring is 450 N/m. When it is released, the object travels along a frictionless, horizontal surface to point A, the bottom of a vertical circular track of radius R = 1.00 m, and continues to move up the track. The speed of the object at the bottom of the track is VA = 13.0 m/s, and the object experiences an average frictional force of 7.00 N while sliding up the track. R (a) What is x? m A (b) If the object were to reach the top of the track, what would be its speed (in m/s) at that point? m/s (c) Does the object actually reach the top of the track, or does it fall off before reaching the top? O reaches the top of the track O falls off before reaching the top ○ not enough information to tell
A block of mass 1.4 kg is attached to a horizontal spring that has a force constant 900 N/m as shown in the figure below. The spring is compressed 2.0 cm and is then released from rest. wwww wwwwww a F x = 0 0 b i (a) A constant friction force of 4.4 N retards the block's motion from the moment it is released. Using an energy approach, find the position x of the block at which its speed is a maximum. ст (b) Explore the effect of an increased friction force of 13.0 N. At what position of the block does its maximum speed occur in this situation? cm

Chapter 25 Solutions

COLLEGE PHYSICS

Ch. 25 - Prob. 11QAPCh. 25 - Prob. 12QAPCh. 25 - Prob. 13QAPCh. 25 - Prob. 14QAPCh. 25 - Prob. 15QAPCh. 25 - Prob. 16QAPCh. 25 - Prob. 17QAPCh. 25 - Prob. 18QAPCh. 25 - Prob. 19QAPCh. 25 - Prob. 20QAPCh. 25 - Prob. 21QAPCh. 25 - Prob. 22QAPCh. 25 - Prob. 23QAPCh. 25 - Prob. 24QAPCh. 25 - Prob. 25QAPCh. 25 - Prob. 26QAPCh. 25 - Prob. 27QAPCh. 25 - Prob. 28QAPCh. 25 - Prob. 29QAPCh. 25 - Prob. 30QAPCh. 25 - Prob. 31QAPCh. 25 - Prob. 32QAPCh. 25 - Prob. 33QAPCh. 25 - Prob. 34QAPCh. 25 - Prob. 35QAPCh. 25 - Prob. 36QAPCh. 25 - Prob. 37QAPCh. 25 - Prob. 38QAPCh. 25 - Prob. 39QAPCh. 25 - Prob. 40QAPCh. 25 - Prob. 41QAPCh. 25 - Prob. 42QAPCh. 25 - Prob. 43QAPCh. 25 - Prob. 44QAPCh. 25 - Prob. 45QAPCh. 25 - Prob. 46QAPCh. 25 - Prob. 47QAPCh. 25 - Prob. 48QAPCh. 25 - Prob. 49QAPCh. 25 - Prob. 50QAPCh. 25 - Prob. 51QAPCh. 25 - Prob. 52QAPCh. 25 - Prob. 53QAPCh. 25 - Prob. 54QAPCh. 25 - Prob. 55QAPCh. 25 - Prob. 56QAPCh. 25 - Prob. 57QAPCh. 25 - Prob. 58QAPCh. 25 - Prob. 59QAPCh. 25 - Prob. 60QAPCh. 25 - Prob. 61QAPCh. 25 - Prob. 62QAPCh. 25 - Prob. 63QAPCh. 25 - Prob. 64QAPCh. 25 - Prob. 65QAPCh. 25 - Prob. 66QAPCh. 25 - Prob. 67QAPCh. 25 - Prob. 68QAPCh. 25 - Prob. 69QAPCh. 25 - Prob. 70QAPCh. 25 - Prob. 71QAPCh. 25 - Prob. 72QAPCh. 25 - Prob. 73QAPCh. 25 - Prob. 74QAPCh. 25 - Prob. 75QAPCh. 25 - Prob. 76QAPCh. 25 - Prob. 77QAPCh. 25 - Prob. 78QAPCh. 25 - Prob. 79QAPCh. 25 - Prob. 80QAPCh. 25 - Prob. 81QAPCh. 25 - Prob. 82QAPCh. 25 - Prob. 83QAPCh. 25 - Prob. 84QAPCh. 25 - Prob. 85QAPCh. 25 - Prob. 86QAPCh. 25 - Prob. 87QAPCh. 25 - Prob. 88QAPCh. 25 - Prob. 89QAPCh. 25 - Prob. 90QAP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning