Concept explainers
Figure 25-54 shows capacitor 1 (C1 = 8.00 μF), capacitor 2 (C2 = 6.00 μF), and capacitor 3 (C3 = 8.00 μF), connected to a 12.0 V battery. When switch S is closed so as to connect uncharged capacitor 4 (C4 = 6.00 μF), (a) how much charge passes through point P from the battery and (b) how much charge shows up on capacitor 4? (c) Explain the discrepancy in those two results.
Figure 25-54 Problem 61.
Want to see the full answer?
Check out a sample textbook solutionChapter 25 Solutions
Fundamentals of Physics Extended
Additional Science Textbook Solutions
Human Physiology: An Integrated Approach (8th Edition)
Human Anatomy & Physiology (2nd Edition)
Human Biology: Concepts and Current Issues (8th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Microbiology with Diseases by Body System (5th Edition)
College Physics: A Strategic Approach (3rd Edition)
- According to UE=12C(V)2 (Eq. 27.3), a greater capacitance means more energy is stored by the capacitor, but according to UE = Q2/2C (Eq. 27.2), a greater capacitance means less energy is stored. How can both of these equations be correct?arrow_forwardA large parallel-plate capacitor is attached to a battery that has terminal potential (Fig. 27.15A). After a period of time, the capacitor stores charge Q so that its top plate is positive and its bottom plate is negative, and the potential difference between the plates is VC = . An I-shaped neutral conductor consisting of two parallel plates connected by a wire is slipped between the plates of the capacitor so that all four plates are parallel (Fig. 27.15B). What are the charges q1, and q2 on the plates of the I-shaped conductor? What is the potential difference VC between the top and bottom plates of the capacitor?arrow_forward(i) Rank the following five capacitors from greatest to smallest capacitance, noting any cases of equality, (a) a 20-F capacitor with a 4-V potential difference between its plates (b) a 30-F capacitor with charges of magnitude 90 C on each plate (c) a capacitor with charges of magnitude 80 C on its plates, differing by 2 V in potential. (d) a 10-F capacitor storing energy 125 J (e) a capacitor storing energy 250 J with a 10-V potential difference (ii) Rank the same capacitors in part (i) from largest to smallest according to the potential difference between the plates, (iii) Rank the capacitors in part (i) in the order of the magnitudes of the charges on their plates, (iv) Rank the capacitors in part (i) in the order of the energy they store.arrow_forward
- What If? The two capacitors of Problem 13 (C1 = 5.00 F and C2 = 12.0 F) are now connected in series and to a 9.00-Y battery. Find (a) the equivalent capacitance of the combination. (b) the potential difference across each capacitor, and (c) the charge on each capacitor.arrow_forwardConsider the circuit shown in Figure P20.52, where C1 = 6.00 F, C2 = 3.00 F, and V = 20.0 V. Capacitor C1 is first charged by closing switch S1. Switch S1 is then opened, and the charged capacitor is connected to the uncharged capacitor by closing S2. Calculate (a) the initial charge acquired by C1 and (b) the final charge on each capacitor. Figure P20.52arrow_forwardA pair of capacitors with capacitances CA = 3.70 F and CB = 6.40 F are connected in a network. What is the equivalent capacitance of the pair of capacitors if they are connected a. in parallel and b. in series?arrow_forward
- (a) Find the equivalent capacitance between points a and b for the group of capacitors connected as shown in Figure P25.12 (page 686). Take C1 = 5.00 F, C2 = 10.0 F, and C3 = 2.00 F. (b) What charge is stored on C3 if the potential difference between points a and b is 60.0 V? Figure P25.12arrow_forwardHow many electrons should be removed from an initially uncharged spherical conductor of radius 0.300 m to produce a potential of 7.50 kV at the surface?arrow_forward(a) What is the energy stored in the 10.0 F capacitor of a heart defibrillator charged to 9.00103 V ? (b) Find the amount of stored charge.arrow_forward
- Figure given below shows capacitor 1 (C, = 8.00 µF), capacitor 2 (C2 = 6.00 µF), and capacitor 3 (Cz = 8.00 µF) connected to a 12.0 V battery. When switch S is closed so as to connect uncharged capacitor 4 (C4 = 6.00 µF), how much charge passes through point P from the battery.arrow_forwardThe figure shows a 10.5 V battery and four uncharged capacitors of capacitances C1 = 1.09 µF,C2 = 2.21 µF,C3 = 3.08 µF, and C4 = 4.34 µF. If only switch Sq is closed, what is the charge on (a) capacitor 1, (b) capacitor 2, (c) capacitor 3, and (d) capacitor 4? If both switches are closed, what is the charge on (e) capacitor 1, (f) capacitor 2, (g) capacitor 3, and (h) capacitor 4? (a) Number .00000845 Units C (b) Number .00001537 Units (c) Number .00000845 Units (d) Number .00001537 Units (e) Number i Units C (f) Number i Units (g) Number i Units (h) Number i Unitsarrow_forwardThe figure shows capacitor 1 (C1 = 9.55 µF), capacitor 2 (C2 = 6.12 µF), and capacitor 3 (C3 = 7.93 µF) connected to a 13.4 V battery. When switch S is closed so as to connect uncharged capacitor 4 (C4 = 4.66 µF), (a) how much charge passes through point P from the battery and (b) how much charge shows up on capacitor 4? %3D %3D %3D P S C3 (a) umber i Units (b) Number i Units > >arrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning